
A scalable new mechanism to store 
and serve the ATLAS detector 
description through a REST web API

ATLAS GeoModel
• An online Geometry DB stores primary numbers used to build objects. But no structure

and no relationships are saved in the DB; and no data are accessible offline;
• Very difficult to debug the detector description: have to go through the code
• No way to open, explore and use the Detector Description without the whole 

experiment’s framework
• Strong platform dependency : SLC6 Linux the only platform supported by ATLAS;
• Not possible to interactively query the GeoModel and retrieve matching volumes only.

Current limitations

ACAT 2017, Seattle (US)

FRESH, NEW IDEAS for a way to easily store, restore, access and serve the experiment’s geometry

1st STEP - Decoupling and GeoModel persistification, 
so that applications can use the Detector Description 
without the need of run the full ATLAS framework. 

Presented at CHEP 20163. 

2nd STEP – NEW! Easy, interactive access to the geometry through a REST API, and retrieval of geometry subsets

Riccardo Maria BIANCHI (Pittsburgh), Ilija VUKOTIC (Chicago)
on behalf of the ATLAS CollaborationContact: rbianchi@cern.ch

1: ATLAS Collaboration (2008) JINST 3 S08003
2: Boudreau J, Tsulaia V (2004) CHEP 2004 
3: Bianchi RM, Boudreau J, Vukotic I (2016) 

https://indico.cern.ch/event/505613/contributions/2228522/

4: https://neo4j.com
5: https://www.elastic.co

PV

PV PV

PV

FPV

PV

Shared volume
Child 2

Child 1

Child 2Child 1

Child 3

Parent 1 Parent 2

TWO GOALS, TWO TECHNOLOGIES to implement a REST service to serve the geometry, different approaches

Graph DB (Neo4j4)
Works on GeoModel nodes

Search Engine (ElasticSearch / Kibana5)
Works on end physical volumes

To store, query and 
visualize the inner 
structure of the 
ATLAS geometry 
tree, and all the 
relationships 
between its nodes.

For a fast retrieval of 
the final objects: all 
transformations and 
attributes are 
computed and 
accumulated at 
indexing time.

Neo4j is a No-SQL DB based on nodes and relationships, like GeoModel. Cypher is its query 
language, focused on relationships, labels, properties. Users are able to fast query all the 
instances of GeoModel objects used in the actual ATLAS geometry, and all connections and 
paths between them. The order of all nodes is stored, because it is used by GeoModel while 
traversing the tree to construct the detector. Also, users can interactively visualize the nodes 
and their connections in a graph, which is extremely useful to debug the Detector Description.

ElasticSearch uses Lucene as query language. 
Relationships between the nodes and nodes’ order are not stored, all object are “flattened”: all 
the attributes are collected, and all the space transformations are computed while inserting 
the data. Users then can quickly retrieve the ”final volumes”: physical volumes together with 
their absolute positions and all attributes related to it. The goal is to let applications quickly 
retrieve geometry objects without having to traverse the geometry tree.

The ATLAS experiment1 uses GeoModel2

to describe the geometry tree: a set of 
nodes connected through relationships of 
different types. The GeoModel tree is 
computed on-the-fly when requested 
through the experiment framework, and 
stored in-memory only.

Comparison
Offlline acces to geometry data Storage, Query and Visualization of all 

GeoModel nodes and relationships
Partial retrieval of geometry data 

(subtrees)
Fast retrieval of final physical 
volumes with global positions

Current implementation: Geometry DB X X X X
NEW - Persistent SQLite DB V (with SQL gimmick!) (with SQL gimmick!) X
NEWEST! – Neo4j Graph DB V V V X
NEWEST! – ElasticSearch/Kibana V X V V

Retrieve a specific volume
name:TileEndcapNeg
Retrieve all Pixel volumes in the EndCap side C
tags:Pixel AND tags:EndcapC
Retrieve all box-shaped volumes whose material is “Air”
shape:box AND material:Air

Retrieve a specific GeoModel node (GeoLogVol), based on a node property:
match (n:LogVol) where n.name = "TileEndcapNeg" return n;
As above, but retrieve the GeoPhysLogVol which uses it:
match (n:PhysVol)-[r:LOGVOL]->(m:LogVol) where m.name = "TileEndcapNeg" return m, labels(m),n,r;
Get all "Box" Shape nodes used together with "Air" as Material
match (s:Shape {type: "Box"})<-[rs:SHAPE]-(l:LogVol)-[rm:MATERIAL]->(m:Material {name: "Air"}) 
return s,rs,l,rm,m;
Get all the children nodes of the RootVolume, and sort them by the 'position' property of the CHILD relationship (order is 
important in GeoModel because it affects how the tree is traversed)
match (n:RootVolume)-[r:CHILD]->(m) with r,m order by r.position return r.position, m;

Example queries (on GeoModel nodes – easy to construct queries to query the tree structure) Example queries (on final physical volumes – easy to construct queries to fast retrieve volumes)

GeoModel tree SQLite file

Both Neo4j and ES/Kibana have REST access as well as web interfaces for interactive queries


