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In a Nutshell 
•  Hadoop clusters @ CERN feature ~5 PB of raw storage 

•  39 nodes with 64GB of RAM and 32 cores/node  
•  Mix of Intel/AMD and CentOS7/SLC6 

•  Since 2015 CMS has stored large sets of computing logs 
•  Evaluation of Apache Spark 

•  Scalable and efficient processing of metadata on Hadoop platform  
•  Leverage in-memory and persistence API 
•  Scala vs Python 

•  How an experiment can benefit from Spark 
•  Reduce processing time on large dataset (DS) and metadata 
•  Perform M.L. studies/analytics over large DS from multiple data sources 
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Use Cases 
• Site Utilization 

•  Which DS occupy my T[1-3] site? 

• Users Activities and Daily Stats 
•  Most accessed Datatier or DS, job throughput, failure distributions 

• Machine Learning (M.L.) on DS Popularity 
•  Fast queries for reprocessing of monitoring time intervals 
•  LFN-to-DS aggregation and correlation 
•  Assessment of predictive models that can learn DS utilization profiles 
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Computing Logs on Hadoop 
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• Billions of 2015-17 file access logs, heterogeneous sources 
• Millions of samples after file aggregation by dataset 
•  Thousands dataframes built on common attributes for M.L. 



Site Stats by Datatier 
•  Stats for all CMS sites provide insight on user activities 
•  Easily merge DBS+PhEDEx in Spark job, not possible with ORACLE 
•  Process billions of logs, e.g. AAA DS, in reasonable time 
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T2-sites           dataset size=1.283e+17 (113.989 PB)
evts=250809312370   replica size=7.446e+16 (66.137 PB)
------------------------------------------------------
                      evts          size  replica size
tier
AOD           162782404863  2.031304e+16  1.959890e+16
RAW          1683921651218  4.498240e+16  1.722459e+16
AODSIM         34936712479  9.451795e+15  9.058594e+15
RECO           55951414059  1.714168e+16  7.169092e+15
MINIAOD       246201671780  4.792439e+15  4.780326e+15
MINIAODSIM    132260740917  4.145671e+15  4.075050e+15
GEN-SIM        35102730685  1.502151e+16  3.213296e+15
ALCARECO       95433911221  3.302962e+15  3.095442e+15



Job Throughput by Daily Stats 
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•  75% successful jobs 

•  Spark allows to look at different 
angles of CMS data by aggregating 
streams 
•  Almost impossible with distributed DB 
•  See job throughput or identify failures 
•  Easy to look at specific sites or slice 

data in different dimension 
•  Provide control and flexibility for data 

monitoring 
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Spark Processing Time (Month) 

Monitoring queries processing 30 days, 58.68 GB, 64-67 mappers 

Monitoring DS Popularity 
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•  Oracle: continuous running of incremental MV update 
•  Hadoop: re-processing of popularity queries for any time interval is fast 
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Machine Learning on DS Popularity 
• Data placement at most WLCG experiments is based on 

DS popularity 
•  need to make optimal choice of replication to maximize data 

availability for processing and analysis 
• Common questions 

•  Can we predict the popularity of a new dataset? 
•  Pre-compute the proper number of replicas? 
•  Delete unpopular replicas? 
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Understanding Popularity Timespan 
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•  1 week is the ideal timespan for DS Popularity Prediction 

Accesses	on	3	weeks	are	~50%	less	frequent	 DS	have	rela:vely	short	access	pa=ern		



Ideal Popularity Cutoffs 
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•  Different cutoffs on the usage features bring different popularity definitions 

Thresholds split 
popular and non-
popular DS 



Generation of M.L. Dataframe 
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AAA logs 
2015 

AAA logs 
2016 

AAA logs 
2017 

repartition + persist + filter PhEDEx 

DS Daily samples 

DS Weekly samples 

Load(hadalytic + “wdtmon/xrootd/cms/*/*/*/aaa”) 
2,370,570,956 rows 
2hours processing 

M.L. dataframe 

61,032,847 rows 
20mins processing 

filter (cputime>0 & readbytes>0 & !corrupted 
1,432,123,793 rows 
25mins processing 

weeki(DS,server) = weeki+1(DS,server) 

436,132 rows 

add newly created DS 

307,546 rows 

/AllPhysics2760/Nov2011_HI-SD_JetHI-276TeV_ppRereco/RECO 



Model Training on Spark 
•  Load Input Samples 

•  Weekly CSV samples (create maps of categorical features) 
•  Weekly SVM samples 

• Define the Features Array 
•  Make LabeledPoint of features 

•  Train and Score Classifiers  
•  Python SkLearn 
•  Scala MLlib 

•  Compute classification probabilities 
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Enhancing the Predictive Models 
•  Feature Engineering 
•  Global vs Site-level Models 

•  Evaluate training of site-classifiers as locality could exist in DS accesses 
•  Model aging and refreshing 
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Number of samples at the most active sites 
 



DS Caching based on Popularity 
• Strategy: do not evict cache elements if popular next week 
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•  PPC always outperforms LRU 

•  PPC is 2x better with limited cache 

•  HitRatemax = 1 – Missescompulsory 

numDS 

 



CMS Computing Analytics on Spark 
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•  Optimization of Spark cluster settings 
•  spark.core.max, spark.executor.cores, spark.dynamicAllocation.maxExecutors 
•  repartition(), persist(MEMORY_AND_DISK) 

•  Scala 
•  Emerging language, Spark is written in Scala, Dataframe/RDD parallelism 

available out-of-the-box 
•  Python 

•  Language known in HEP, but PySpark requires additional training 
•  PySpark is a wrapper around Java libraries (slower versus native libs, need to 

handle memory issue not known in Python, etc.) 
•  Program throughput highly depends on its structure  

•  Use Dataframe operations instead of iterations  
•  Apply functions from Spark API instead of language specific (PySpark) 



Conclusions and Outlook 
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•  Spark is an extremely useful platform to crunch large DS 
•  Quick reprocessing of CMS statistics for all sites, daily job stats, etc. 

•  XrootD DS popularity is very important to CMS operations 
•  Leverage computing analytics on Hadoop/Spark, scalability, M.L. 

•  Best approach 
•  Run analytics with Scala (RDD, dataframe) 
•  Run M.L. with PySpark (reduced sample set, SkLearn state of the art) 

•  Work in progress 
•  Application of DS predictive models to DS replicas 
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