INFN @

C Z

EXPLOITING APACHE SPARK
PLATFORM FOR CMS

COMPUTING ANALYTICS

Marco MEONI, INFN

Luca MENICHETTI, CERN
Valentin KUZNETSOV, CORNELL
Tommaso BOCCALI, INFN
Daniele BONACORSI, UNIBO

(presenter)

08/22/2017 — ACAT 2017 — Seattle

In a Nutshell

- Hadoop clusters @ CERN feature ~5 PB of raw storage
- 39 nodes with 64GB of RAM and 32 cores/node
- Mix of Intel/AMD and CentOS7/SLC6

- Since 2015 CMS has stored large sets of computing logs
- Evaluation of Apache Spark
- Scalable and efficient processing of metadata on Hadoop platform
- Leverage in-memory and persistence API
- Scala vs Python
- How an experiment can benefit from Spark
- Reduce processing time on large dataset (DS) and metadata
- Perform M.L. studies/analytics over large DS from multiple data sources

o
Use Cases

- Site Utilization

- Which DS occupy my T[1-3] site?
- Users Activities and Daily Stats

- Most accessed Datatier or DS, job throughput, failure distributions
- Machine Learning (M.L.) on DS Popularity

- Fast queries for reprocessing of monitoring time intervals

- LFN-to-DS aggregation and correlation
- Assessment of predictive models that can learn DS utilization profiles

s
Computing Logs on Hadoop

- Billions of 2015-17 file access logs, heterogeneous sources
- Millions of samples after file aggregation by dataset
- Thousands dataframes built on common attributes for M.L.

| Source | Items | Type | Description |
EOS 786,934,116 structured Disk storage system at CERN
AAA 2,370,570,956 structured CMS XrootD federation for Grid data
CRAB 1,177,951 structured Grid infrastructure for job submission
DBS3 5,193,522 structured Global dataset/fileblocks catalogue
Block-Replicas 805,614,541 structured Global replica catalogue
PhEDEx 58,227,786 structured Fileblock locator and export service

CADI 1,791 semi-struct CMS conference database

Site Stats by Datatier

Stats for all CMS sites provide insight on user activities
Easily merge DBS+PhEDEX in Spark job, not possible with ORACLE
Process billions of logs, e.g. AAADS, in reasonable time

T2-sites
evts=250809312370

evts
tier
AOD 162782404863
RAW 1683921651218
AODSIM 34936712479
RECO 55951414059
MINIAOD 246201671780
MINIAODSIM 132260740917
GEN-SIM 35102730685
ALCARECO 95433911221

WRARMROBMN

.031304e+16
.498240e+16
.451795e+15
.714168e+16
.79243%e+15
.145671e+15
.502151e+16
.302962e+15

dataset size=1.283e+17 (113.989 PB)
replica size=7.446e+16 (66.137 PB)

replica size

.959890e+16
.722459%e+16
.05859%4e+15
.169092e+15
.780326e+15
.075050e+15
.213296e+15
.095442e+15

WWhANOR PR

Datasets

o N .

é®e§€§§pépépiﬁ’ §§ﬁ§ép @99@ é92§®5 Vqﬁ
SN QN v @l < %
(,‘0 (_,\ ?~ N QR O
Q/ \‘\ $f’) > $59 2\
S\ & & @ &

S
e o
&

Job Throughput by Dalily Stats

- Spark allows to look at different Site: T2_IT_Pisa, tot_cpu JobExecExitCode aggregation
angles of CMS data by aggregating o
streams —

- Almost impossible with distributed DB
- See job throughput or identify failures

- Easy to look at specific sites or slice
data in different dimension

- Provide control and flexibility for data
monitoring

60324

50669
50664
139

75% successful jobs

R
Monitoring DS Popularity

Spark Processing Time (Month) Spark Processing Time (Day)
(72}
©
c
o
O
)
w
\ NI
S S F’S PP S
A+& e§°o° @ NP7 7 PP & K A-/\. B Seconds spent running MV_XRD_stat0
@ /.\S + ~\~ -\. ‘0\0 &0 ~0\0
7 N N NN\ A QS Q7
N D A N R

® Monitoring queries processing 30 days, 58.68 GB, 64-67 mappers

Oracle: continuous running of incremental MV update

Hadoop: re-processing of popularity queries for any time interval is fast

Y
Machine Learning on DS Popularity

- Data placement at most WLCG experiments is based on
DS popularity
- need to make optimal choice of replication to maximize data
availability for processing and analysis

- Common questions
- Can we predict the popularity of a new dataset?
- Pre-compute the proper number of replicas?
- Delete unpopular replicas?

Dataset

2500 -

2000 -

1500 -

1000 -

500 -

Understanding Popularity Timespan

- 1 week is the ideal timespan for DS Popularity Prediction

Dataset Usage

—— 2-week access
—— 3-week access

\

0 10 20 30 40 50
Week

Accesses on 3 weeks are ~50% less frequent

Dataset

10°

10

—
=)
o

0 10 20

Dataset Usage

B Total weeks
B Cons. weeks

||I“II||\\||.,|.|.|..n||
30 40 50

Week

DS have relatively short access pattern

e
|deal Popularity Cutoffs

- Different cutoffs on the usage features bring different popularity definitions

DS size (G8B) nUsers
SU00(1 50000 -
1 1 25000 -
| : : 125000
[40000
10000 100000 -
3000(
£ 30000 75000 -
3
=2
2000 50000 -
10000 I II 10000 I 25000 -
| I l-__ | . B | -
1(0 15 15 0 2 i 6

Log(n)
CPU time readByt (GB]

3000 L0000 -
60000 -
E o000
= 40000 -
1000(¢ o
I 20000 - I
K I-—_ ' A 0- - - I.--?i

l(l 15 20 0 5 10 15

Generation of IVI.L. Dataframe

Load(hadalytic + “wdtmon/xrootd/cms/*/*/*/aaa”)
2,370,570,956 rows

2hours processing
filter (cputime>0 & readbytes>0 & !corrupted
PhEDEX N repartition + perS|st + filter — 1,432,123,793 rows
_25mins processing
’61,032,847 rows! DS Daily samples -{EIIPhysicsZ?Gd)/lNov2011_HI-SD_JetHI-ppRereco/

20mins processing
{veeki(DS,server) = week,,,(DS,server)

DS Weekly samples -{307,546 rows

add newly created DS

[M.L. dataframe ‘-E36,132 rows

{

Model Training on Spark

- Load Input Samples
- Weekly CSV samples (create maps of categorical features)
- Weekly SVM samples . _ Receiver Operating Characteristic
- Define the Features Array
- Make LabeledPoint of features

- Train and Score Classifiers
- Python SkLearn

- Scala MLIib %
- Compute classification probabilities e e m

—— CPU time > 1hh (AUC = 0.94)

0.8

True Positive Rate

0.0 0.2 04 0.6 08 10
False Positive Rate

R =1
Enhancing the Predictive Models

- Feature Engineering

- Global vs Site-level Models
- Evaluate training of site-classifiers as locality could exist in DS accesses

- Model aging and refreshing
Period: 2015-2016

0.900 -

30000 - | L T Static
Number of samples at the most active sites 0.875- —— Reinforced
25000 - 1 L .
25000 0.850 - Sliding Window
V).) .
g 20000 0.825 -
U 1e
p 15000 - 0.800 -
10000 - IIIIII 0.775 -
5000 - IIIIIII 0.750 -
.750
Kﬁ_ T [

Accuracy

|||||||||||||||||||||||||||||||

1234567 891011121314151617 18192021 2223242526 27 28 29 30 31 1 2 3 4 5 6 7 8 9
Site ID

Y
DS Caching based on Popularity

- Strategy: do not evict cache elements if popular next week

0.6 -
PPC always outperforms LRU
0.5° .« PPC is 2x better with limited cache
(] . .
§ 0.4 - * HitRate,,, =1 - Mlssescompulsory
= 03 PPC* numDS
T 0.
—— PPC
0.2- — LRU
— SDC
0.1- OPT

/’

100 200 300 400 500 600 700 800
Cache Size (num DS)

CMS Computing Analytics on Spark

- Optimization of Spark cluster settings
- spark.core.max, spark.executor.cores, spark.dynamicAllocation.maxExecutors
- repartition(), persisttMEMORY _AND _DISK)

- Scala

- Emerging language, Spark is written in Scala, Dataframe/RDD parallelism
available out-of-the-box

- Python
- Language known in HEP, but PySpark requires additional training

- PySpark is a wrapper around Java libraries (slower versus native libs, need to
handle memory issue not known in Python, etc.)

- Program throughput highly depends on its structure
- Use Dataframe operations instead of iterations
- Apply functions from Spark API instead of language specific (PySpark)

T
Conclusions and Outlook

- Spark is an extremely useful platform to crunch large DS
- Quick reprocessing of CMS statistics for all sites, daily job stats, etc.

- XrootD DS popularity is very important to CMS operations

- Leverage computing analytics on Hadoop/Spark, scalability, M.L.

- Best approach
- Run analytics with Scala (RDD, dataframe)
- Run M.L. with PySpark (reduced sample set, SkLearn state of the art)

- Work in progress
- Application of DS predictive models to DS replicas

- Acknowledgement
- CERN-IT for the cluster availablility, maintenance and support

