
EXPLOITING APACHE SPARK
PLATFORM FOR CMS
COMPUTING ANALYTICS

 Marco MEONI, INFN
Luca MENICHETTI, CERN

Valentin KUZNETSOV, CORNELL
Tommaso BOCCALI, INFN

Daniele BONACORSI, UNIBO 08/22/2017 – ACAT 2017 – Seattle

1

(presenter)

In a Nutshell
•  Hadoop clusters @ CERN feature ~5 PB of raw storage

•  39 nodes with 64GB of RAM and 32 cores/node
•  Mix of Intel/AMD and CentOS7/SLC6

•  Since 2015 CMS has stored large sets of computing logs
•  Evaluation of Apache Spark

•  Scalable and efficient processing of metadata on Hadoop platform
•  Leverage in-memory and persistence API
•  Scala vs Python

•  How an experiment can benefit from Spark
•  Reduce processing time on large dataset (DS) and metadata
•  Perform M.L. studies/analytics over large DS from multiple data sources

2

Use Cases
• Site Utilization

•  Which DS occupy my T[1-3] site?

• Users Activities and Daily Stats
•  Most accessed Datatier or DS, job throughput, failure distributions

• Machine Learning (M.L.) on DS Popularity
•  Fast queries for reprocessing of monitoring time intervals
•  LFN-to-DS aggregation and correlation
•  Assessment of predictive models that can learn DS utilization profiles

3

Computing Logs on Hadoop
4

• Billions of 2015-17 file access logs, heterogeneous sources
• Millions of samples after file aggregation by dataset
•  Thousands dataframes built on common attributes for M.L.

Site Stats by Datatier
•  Stats for all CMS sites provide insight on user activities
•  Easily merge DBS+PhEDEx in Spark job, not possible with ORACLE
•  Process billions of logs, e.g. AAA DS, in reasonable time

5

T2-sites dataset size=1.283e+17 (113.989 PB)
evts=250809312370 replica size=7.446e+16 (66.137 PB)
--
 evts size replica size
tier
AOD 162782404863 2.031304e+16 1.959890e+16
RAW 1683921651218 4.498240e+16 1.722459e+16
AODSIM 34936712479 9.451795e+15 9.058594e+15
RECO 55951414059 1.714168e+16 7.169092e+15
MINIAOD 246201671780 4.792439e+15 4.780326e+15
MINIAODSIM 132260740917 4.145671e+15 4.075050e+15
GEN-SIM 35102730685 1.502151e+16 3.213296e+15
ALCARECO 95433911221 3.302962e+15 3.095442e+15

Job Throughput by Daily Stats
6

•  75% successful jobs

•  Spark allows to look at different
angles of CMS data by aggregating
streams
•  Almost impossible with distributed DB
•  See job throughput or identify failures
•  Easy to look at specific sites or slice

data in different dimension
•  Provide control and flexibility for data

monitoring

0
100
200
300
400
500
600
700
800

S
ec

on
ds

Spark Processing Time (Month)

Monitoring queries processing 30 days, 58.68 GB, 64-67 mappers

Monitoring DS Popularity
7

•  Oracle: continuous running of incremental MV update
•  Hadoop: re-processing of popularity queries for any time interval is fast

0
50

100
150
200
250

Day
1 2

3
4

7

8

9
11

12
13 16

17
18 19

20
21

22

23

24
25

26
27 28

Spark Processing Time (Day)

Seconds spent running MV_XRD_stat0

Machine Learning on DS Popularity
• Data placement at most WLCG experiments is based on

DS popularity
•  need to make optimal choice of replication to maximize data

availability for processing and analysis
• Common questions

•  Can we predict the popularity of a new dataset?
•  Pre-compute the proper number of replicas?
•  Delete unpopular replicas?

8

Understanding Popularity Timespan
9

•  1 week is the ideal timespan for DS Popularity Prediction

Accesses	on	3	weeks	are	~50%	less	frequent	 DS	have	rela:vely	short	access	pa=ern		

Ideal Popularity Cutoffs
10

•  Different cutoffs on the usage features bring different popularity definitions

Thresholds split
popular and non-
popular DS

Generation of M.L. Dataframe
11

AAA logs
2015

AAA logs
2016

AAA logs
2017

repartition + persist + filter PhEDEx

DS Daily samples

DS Weekly samples

Load(hadalytic + “wdtmon/xrootd/cms/*/*/*/aaa”)
2,370,570,956 rows
2hours processing

M.L. dataframe

61,032,847 rows
20mins processing

filter (cputime>0 & readbytes>0 & !corrupted
1,432,123,793 rows
25mins processing

weeki(DS,server) = weeki+1(DS,server)

436,132 rows

add newly created DS

307,546 rows

/AllPhysics2760/Nov2011_HI-SD_JetHI-276TeV_ppRereco/RECO

Model Training on Spark
•  Load Input Samples

•  Weekly CSV samples (create maps of categorical features)
•  Weekly SVM samples

• Define the Features Array
•  Make LabeledPoint of features

•  Train and Score Classifiers
•  Python SkLearn
•  Scala MLlib

•  Compute classification probabilities

12

Enhancing the Predictive Models
•  Feature Engineering
•  Global vs Site-level Models

•  Evaluate training of site-classifiers as locality could exist in DS accesses
•  Model aging and refreshing

13

Number of samples at the most active sites

DS Caching based on Popularity
• Strategy: do not evict cache elements if popular next week

14

•  PPC always outperforms LRU

•  PPC is 2x better with limited cache

•  HitRatemax = 1 – Missescompulsory

numDS

CMS Computing Analytics on Spark
15

•  Optimization of Spark cluster settings
•  spark.core.max, spark.executor.cores, spark.dynamicAllocation.maxExecutors
•  repartition(), persist(MEMORY_AND_DISK)

•  Scala
•  Emerging language, Spark is written in Scala, Dataframe/RDD parallelism

available out-of-the-box
•  Python

•  Language known in HEP, but PySpark requires additional training
•  PySpark is a wrapper around Java libraries (slower versus native libs, need to

handle memory issue not known in Python, etc.)
•  Program throughput highly depends on its structure

•  Use Dataframe operations instead of iterations
•  Apply functions from Spark API instead of language specific (PySpark)

Conclusions and Outlook
16

•  Spark is an extremely useful platform to crunch large DS
•  Quick reprocessing of CMS statistics for all sites, daily job stats, etc.

•  XrootD DS popularity is very important to CMS operations
•  Leverage computing analytics on Hadoop/Spark, scalability, M.L.

•  Best approach
•  Run analytics with Scala (RDD, dataframe)
•  Run M.L. with PySpark (reduced sample set, SkLearn state of the art)

•  Work in progress
•  Application of DS predictive models to DS replicas

•  Acknowledgement
•  CERN-IT for the cluster availablility, maintenance and support

