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In a Nutshell

- Hadoop clusters @ CERN feature ~5 PB of raw storage
- 39 nodes with 64GB of RAM and 32 cores/node
- Mix of Intel/AMD and CentOS7/SLC6

- Since 2015 CMS has stored large sets of computing logs
- Evaluation of Apache Spark
- Scalable and efficient processing of metadata on Hadoop platform
- Leverage in-memory and persistence API
- Scala vs Python
- How an experiment can benefit from Spark
- Reduce processing time on large dataset (DS) and metadata
- Perform M.L. studies/analytics over large DS from multiple data sources
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Use Cases

- Site Utilization

- Which DS occupy my T[1-3] site?
- Users Activities and Daily Stats

- Most accessed Datatier or DS, job throughput, failure distributions
- Machine Learning (M.L.) on DS Popularity

- Fast queries for reprocessing of monitoring time intervals

- LFN-to-DS aggregation and correlation
- Assessment of predictive models that can learn DS utilization profiles
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Computing Logs on Hadoop

- Billions of 2015-17 file access logs, heterogeneous sources
- Millions of samples after file aggregation by dataset
- Thousands dataframes built on common attributes for M.L.

| Source | Items | Type | Description |
EOS 786,934,116  structured Disk storage system at CERN
AAA 2,370,570,956  structured CMS XrootD federation for Grid data
CRAB 1,177,951  structured Grid infrastructure for job submission
DBS3 5,193,522 structured Global dataset/fileblocks catalogue
Block-Replicas 805,614,541  structured Global replica catalogue
PhEDEx 58,227,786  structured Fileblock locator and export service

CADI 1,791 semi-struct CMS conference database




Site Stats by Datatier

Stats for all CMS sites provide insight on user activities
Easily merge DBS+PhEDEX in Spark job, not possible with ORACLE
Process billions of logs, e.g. AAADS, in reasonable time

T2-sites
evts=250809312370

evts
tier
AOD 162782404863
RAW 1683921651218
AODSIM 34936712479
RECO 55951414059
MINIAOD 246201671780
MINIAODSIM 132260740917
GEN-SIM 35102730685
ALCARECO 95433911221
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.031304e+16
.498240e+16
.451795e+15
.714168e+16
.79243%e+15
.145671e+15
.502151e+16
.302962e+15

dataset size=1.283e+17 (113.989 PB)
replica size=7.446e+16 (66.137 PB)

replica size

.959890e+16
.722459%e+16
.05859%4e+15
.169092e+15
.780326e+15
.075050e+15
.213296e+15
.095442e+15
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Job Throughput by Dalily Stats

- Spark allows to look at different Site: T2_IT_Pisa, tot_cpu JobExecExitCode aggregation
angles of CMS data by aggregating o
streams —

- Almost impossible with distributed DB
- See job throughput or identify failures

- Easy to look at specific sites or slice
data in different dimension

- Provide control and flexibility for data
monitoring

60324

50669
50664
139

75% successful jobs
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Monitoring DS Popularity

Spark Processing Time (Month) Spark Processing Time (Day)
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® Monitoring queries processing 30 days, 58.68 GB, 64-67 mappers

Oracle: continuous running of incremental MV update

Hadoop: re-processing of popularity queries for any time interval is fast
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Machine Learning on DS Popularity

- Data placement at most WLCG experiments is based on
DS popularity
- need to make optimal choice of replication to maximize data
availability for processing and analysis

- Common questions
- Can we predict the popularity of a new dataset?
- Pre-compute the proper number of replicas?
- Delete unpopular replicas?
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Understanding Popularity Timespan

- 1 week is the ideal timespan for DS Popularity Prediction

Dataset Usage

—— 2-week access
—— 3-week access
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Accesses on 3 weeks are ~50% less frequent
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DS have relatively short access pattern
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|deal Popularity Cutoffs

- Different cutoffs on the usage features bring different popularity definitions
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Generation of IVI.L. Dataframe

Load(hadalytic + “wdtmon/xrootd/cms/*/*/*/aaa”)
2,370,570,956 rows

2hours processing
filter (cputime>0 & readbytes>0 & !corrupted
PhEDEX N repartition + perS|st + filter — 1,432,123,793 rows
_25mins processing
’61,032,847 rows! DS Daily samples -{EIIPhysicsZ?Gd)/lNov2011_HI-SD_JetHI-ppRereco/

20mins processing
{veeki(DS,server) = week,,,(DS,server)

DS Weekly samples -{307,546 rows

add newly created DS

[ M.L. dataframe ‘-E36,132 rows

{




Model Training on Spark

- Load Input Samples
- Weekly CSV samples (create maps of categorical features)
- Weekly SVM samples . _ Receiver Operating Characteristic
- Define the Features Array
- Make LabeledPoint of features

- Train and Score Classifiers
- Python SkLearn

- Scala MLIib %
- Compute classification probabilities e e m

—— CPU time > 1hh (AUC = 0.94)
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Enhancing the Predictive Models

- Feature Engineering

- Global vs Site-level Models
- Evaluate training of site-classifiers as locality could exist in DS accesses

- Model aging and refreshing
Period: 2015-2016
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DS Caching based on Popularity

- Strategy: do not evict cache elements if popular next week
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CMS Computing Analytics on Spark

- Optimization of Spark cluster settings
- spark.core.max, spark.executor.cores, spark.dynamicAllocation.maxExecutors
- repartition(), persisttMEMORY _AND _DISK)

- Scala

- Emerging language, Spark is written in Scala, Dataframe/RDD parallelism
available out-of-the-box

- Python
- Language known in HEP, but PySpark requires additional training

- PySpark is a wrapper around Java libraries (slower versus native libs, need to
handle memory issue not known in Python, etc.)

- Program throughput highly depends on its structure
- Use Dataframe operations instead of iterations
- Apply functions from Spark API instead of language specific (PySpark)
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Conclusions and Outlook

- Spark is an extremely useful platform to crunch large DS
- Quick reprocessing of CMS statistics for all sites, daily job stats, etc.

- XrootD DS popularity is very important to CMS operations

- Leverage computing analytics on Hadoop/Spark, scalability, M.L.

- Best approach
- Run analytics with Scala (RDD, dataframe)
- Run M.L. with PySpark (reduced sample set, SkLearn state of the art)

- Work in progress
- Application of DS predictive models to DS replicas

- Acknowledgement
- CERN-IT for the cluster availablility, maintenance and support



