GQLink

An implementation of Quantized State System (QSS) methods in Geant4

Lucio Santi^{1,2}, Federico Bergero³ Soon Yung Jun⁴, Krzysztof Genser⁴, Daniel Elvira⁴ Rodrigo Castro^{1,2}

¹Universidad de Buenos Aires ²ICC-CONICET ³CIFASIS-CONICET (Argentina)

⁴FNAL (USA)

ACAT 2017, 21-25 August University of Washington, Seattle, WA

Table of contents

- Introduction
- 2 Background information
 - The Geant4 simulation toolkit
 - Quantized State System (QSS) methods and QSS Solver
 - Preliminary comparison between Geant4 and QSS Solver
- 3 Geant4 to QSS Link (GQLink): an implementation of QSS within Geant4
- 4 Results
 - CMS application analysis
 - Alternative scenarios
- **6** Work in progress
- **6** Conclusions

Motivation of this work

- Simulation in HEP involves the numerical solution of ODE systems in order to determine the trajectories described by charged particles in a magnetic field.
- As a particle moves through a detector, each volume crossing interrupts the underlying numerical solver.
- Traditional methods can invest considerable computational efforts to handle very frequent discontinuities accurately (detection of intersection points).

Motivation of this work

- Quantized State System methods (QSS, Kofman 2001 [7]) is a modern family of numerical integration methods exhibiting attractive features for this type of HEP simulation scenarios.
- The goals pursued in this work are:
 - To develop a proof-of-concept implementation of QSS within the Geant4 simulation toolkit.
 - ► To address its suitability as an alternative production integrator, and
 - ► To characterize its performance in a realistic HEP application.

The Geant4 simulation toolkit

- **Geant4** [1] is the most widely used simulation toolkit in contemporary HEP experiments.
- Provides classical numerical methods based on time discretization
 [3] (variations of the Runge-Kutta family of numerical solvers [4]).
- Uses custom iterative algorithms to approximate the event times of each spatial discontinuity (which mostly occur after a physics interaction).
- When these events are very frequent, they can dominate the CPU time dedicated to the integration method, and reduce considerably its performance.

Geant4: particle transport

Transportation of a charged particle q along a step of length h proposed by a physics process:

 \Rightarrow a total of 11 RHS evaluations involved for the 4th order Runge-Kutta.

Quantized State System methods

- QSS methods are based on state variable quantization.
- As opposed to traditional solvers which discretize time (e.g., Runge-Kutta family) QSS methods discretize the system's state variables.
- Continuous state variables are thus quantized and approximated by their corresponding quantized variables.
- The relation between both is given by a **quantization function** which is in charge of the **error control** and **accuracy control**.

ODE system

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t))$$

 \rightarrow

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{q}(t))$$

QSS1: first order quantization function

$$q_i(t) = egin{cases} x_i(t) & ext{if } \left|q_i(t^-) - x_i(t)
ight| \geq \Delta Q_i \ q_i(t^-) & ext{otherwise} \end{cases}$$

- ΔQ_i is the **quantum**.
 - ▶ Maximum deviation allowed between x_i and q_i (error control).
 - ▶ Derived from the **precision** demanded by the user.
- Higher order methods (QSSn) follow essentially the same principle.
 - From the definition above, in QSS1 q(t) follows piecewise constant trajectories.
 - ▶ In QSSn, q(t) is composed of piecewise (n-1)-th order polynomials.

QSS features

- QSS features attractive for HEP problems
 - Asynchronicity

Decoupled, independent computation of changes in states variables.

- Lightweight discontinuity handling Boundary crossings detected by finding roots of polynomial equations.
- ► Dense trajectory output
- Selected speedups reported for QSS vs. time-slicing methods modeling processes in various domains [6][2]

Model	Features	Speedup
advection-reaction	10 ⁴ state variables	30×
spiking neurons	10³ state variables	35×
logic inverters chain	4000 neurons, 80 connections per neuron	100×
cellular division	100 cells, 600 state variables	100x to 1000x

Standalone tool: QSS Solver

- The QSS Solver [5] is an open-source standalone simulation tool.
- Provides C implementations for several QSS methods.
- Provides also implementations of some traditional algorithms (e.g., Dormand-Prince method).
- Our GQLink interface partially relies on the QSS Solver's simulation engine.

Preliminary comparison between Geant4 and QSS Solver

- Circular 2D particle motion, uniform magnetic field, crossing equidistant parallel planes.
 - ► Known exact analytic solution facilitates error analysis.
 - ► Physics processes turned off.

• With 200 plane crossings and a track length of 100 m, QSS Solver is 6x faster than Geant4[9][8].

Geant4 to QSS Link (GQLink): an implementation of QSS within Geant4

GQLink: QSS within Geant4

- GQLink is a proof-of-concept implementation of QSS in Geant4.
 - ► Geant4 version 10.03.p01 (released February 24, 2017).
 - ► QSS Solver engine from version 3.0 (as of March 2016).
- Provides three new shared libraries to Geant4:
 - ► libqss: QSS core functionality.
 - ▶ libgqlink: interface API between Geant4 and QSS.
 - ▶ libmodel: model definition and structure (i.e., Lorentz equations).
- QSS methods have complete control over the propagation for each Geant4 transportation step.
 - \blacktriangleright QSS manages accuracy in its own terms (through the control of the quantum $\Delta Q).$

GQLink: high-level diagram

- GQLink: not another Geant4 stepper.
- An abstract, clean, single entry point interface to the QSS Solver family of numerical integration methods.

Detection of boundary crossings

- Boundary crossings are detected through Geant4's geometry library.
- Follows same call pattern as in standard Geant4 simulations:
 - ► LocateGlobalPointWithinVolume
 - Notifies the geometry navigator that the particle has moved to a new position inside the current volume.
 - ► IntersectChord
 - Computes an initial estimation of an intersection by means of a linear segment between the endpoints of the step.
 - ► EstimateIntersectionPoint
 - Refines the initial estimation mentioned above through an iterative procedure.

Detection of boundary crossings

Cheaper particle transport until the crossing point using QSS polynomial dense output instead of iterative procedures:

 QSS dense output not fully exploited yet for boundary crossing detection ⇒ main goal driving our current work.

CMS application analysis

- GQLink validation was performed against a standalone Geant4 application featuring:
 - ► Full CMS (RunI) detector geometry.
 - ▶ Volume base magnetic field excerpted from CMSSW.
 - ▶ Particle gun shooting π^- particles (10 GeV, 10^4 events).
 - ▶ Pythia $pp \rightarrow H \rightarrow ZZ$ (Z to all channels) ($\sqrt{s} = 14$ TeV, 50 events).
- Step count distribution for π^- (left) and secondary electrons (right) for 10^4 single π^- events, showing equivalency of GQLink simulations:

CMS application: performance comparison

• Single π^- events

- ► GQLink ~17% slower.
- Pythia $H \rightarrow ZZ$ events
 - ▶ GQLink \sim 22% slower (5.86 hours vs. 4.8 hours).
- ullet Geant4 stepper: G4ClassicalRK4 (accuracy set to $\epsilon=10^{-5}$).

Alternative scenario: helix and parallel planes

- Different scenario: helix trajectory crossing parallel equidistant planes & more frequent boundary crossings.
- Physics processes turned off.
- Using G4ClassicalRK4 stepper (accuracy set to $\epsilon=10^{-5}$).

• GQLink outperforms Geant4 when using \geq 300 planes (\sim 35% faster for 700 planes).

Work in progress

- Exploitation of QSS capabilities for efficient geometry crossing detection:
 - ► Conversion of Geant4 solids into faceted polyhedrons.
 - Finding intersection points by (analytically) solving a polynomial equation given by the equation of a plane and the QSS polynomials approximating the trajectory.
 - Candidate plane given by the face crossed by the linear segment joining the endpoints of a step.

Conclusions

- We developed **GQLink**, a prototype for QSS methods within Geant4.
- Validation: number of steps and tracks produced are statistically consistent with Geant4's for both toy examples and realistic HEP applications.
- Performance:
 - We found that GQLink can outperform Geant4 in certain simplified scenarios involving tracking only.
 - ▶ Preliminary tests revealed GQLink is currently \sim 17% slower than standard Geant4 in a full CMS realistic scenario (using single π^- events).
- From an abstract viewpoint, GQLink also opens new possibilities to interface Geant4 with any external stepper.

Thank you!

Questions?

References I

J. Allison et. al., the Geant4 Collaboration.

Recent developments in geant4.

Nuclear Instruments and Methods A, 835:186-225, 2016.

F. Bergero, J. Fernndez, E. Kofman, and M. Portapila.

Quantized State Simulation of Advection–Diffusion–Reaction Equations.

In *Mecánica Computacional*, volume XXXII, pages 1103–1119, Mendoza, Argentina, 2013. Asociación Argentina de Mecánica Computacional.

F. E. Cellier and E. Kofman.

Continuous System Simulation.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

References II

B. Cockburn and C.-W. Shu.

The runge-kutta discontinuous galerkin method for conservation laws v: multidimensional systems.

Journal of Computational Physics, 141(2):199-224, 1998.

J. Fernández and E. Kofman.

A Stand-Alone Quantized State System Solver. Part I. In *Proc. of RPIC 2013*, Bariloche, Argentina, 2013.

G. Grinblat, H. Ahumada, and E. Kofman.

Quantized State Simulation of Spiking Neural Networks.

Simulation: Transactions of the Society for Modeling and Simulation International, 88(3):299–313, 2012.

References III

E. Kofman and S. Junco.

Quantized State Systems. A DEVS Approach for Continuous System Simulation.

Transactions of SCS, 18(3):123-132, 2001.

N. Ponieman.

Aplicación de Métodos de Integración por Cuantificación al Simulador de Partículas Geant4.

Master's thesis, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires., 2015.

L. Santi, N. Ponieman, S. Y. Jun, K. Genser, D. Elvira, and R. Castro.

Application of State Quantization-Based Methods in HEP Particle Transport Simulation.

Journal of Physics: Conference Series, 2016.