

This Report is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°675440

Deep learning in jet reconstruction at CMS

Markus Stoye^{1,2} for the CMS collaboration CERN¹, ITN aMVA4newphysics²

ACAT, 22nd August 2017

Content

DeepCSV:

 Heavy-flavor jet-tagger with human engineered variables and track pre-selections for heavy flavor tagging

DeepJet:

 Jet-tagger (heavy flavor, quark/gluon) using more raw information from jet constituent

Data/MC

Some new strategy proposals (not CMS)

DeepCSV

Jet flavour tagging

QCD:
$$q = c \text{ or } b$$

q = c or b
Often two b-hadron in a single

Often two b-hadron in a single AK4 jet for gluon splitting

Inspired by this we defined 4 *exclusive* categories:

- Exactly one b hadron in the jet
- Exactly one c hadron, with no b-hadron in the jet
- Two or more b hadrons in jet
- Light quark/gluon jets (udsg)

→ Jet flavour tagging is *intrinsically* a multi-class classification problem

DeepCSV input features

(for detailed list of acronyms: BTV 15-001)

Per jet (sample):

```
['jet_pt', 'jet_eta','jetNSecondaryVertices', 'trackSumJetEtRatio',
'trackSumJetDeltaR','vertexCategory',
'trackSip2dValAboveCharm','trackSip2dSigAboveCharm', 'trackSip3dValAboveCharm',
'trackSip3dSigAboveCharm', 'jetNSelectedTracks','jetNTracksEtaRel']
```

Per 1st 6(4) tracks (impact parameter sorted, pre-selected):

['trackJetDistVal','trackPtRel','trackDeltaR','trackPtRatio','trackSip3dSig','trackSip2dSig','
trackDecayLenVal','TagVarCSV_trackEtaRel']

From 1st secondary vertex:

['vertexMass','vertexNTracks','vertexEnergyRatio','vertexJetDeltaR','flightDistance2dVal','flightDistance
e2dSig','flightDistance3dVal','flightDistance3dSig'],

- Same variables used for the former standard CMS tagger "CSVv2"
- Red are changes with respect to CSVv2, i.e. DeepCSV uses slightly (factor 2) more

Training Stratgy

Three aims:

- A generic tagger: use admixture of different processes that produce heavy flavour
- Robust tagger: train including realistic special cases, e.g. we do keep jets with accidental lepton overlap
- Optimal training: Large jets sample to avoid overfitting

- QCD and tt for training
- 50M jets!

DeepCSV: DNN details

Good results achieved with relative dense DNN structure

Performance

- DeepCSV does not use muons to allow for more validation option. With muons (as in cMVA) performance improves further
- At 0.1% light fake rate, 20% (40% \rightarrow 50%) more efficient for b-jets
- At 1% CSVv2 b-jet efficiency 40% less fake rate
- For 0.1% fake rate: new pixel and new software lead to same gain, for 1% fake rate, software gain 40% of new hardware and more than hardware for b vs. c-jets

Big performance improvements

ROC for c vs b

- Default c-tagger is *binary*, i.e. trained on b vs c only.
- DeepCSV can be made binary (p'(b)+p'(c)=1) after the training by:

$$p'(c) = \frac{p(c)}{p(c)+p(b)}$$

- DeepCSV best c-tag performance
- Note, the c-tagger uses some lepton information

ROC c vs. light

$$p'(c) = \frac{p(c)}{p(c)+p(udgs)}$$

Three CMS taggers become one:

CSVv2 (b vs. light&c with given c/light ratio), c-tag (c vs light) and c-tag (c vs b) → DeepCSV multi-class tagger

Tagging simplified by single tagger

Performance in real data

Save data/simulation agreement

Application in physics analysis

Significant Improvement: e.g. up to \sim 50% more signal for 15% more bkg \rightarrow Significantly improved lower mass limit (150 GeV in Higgsino mass)

DeepFlavour

DeepFlavour & DeepJet

Include more raw data (DeepFlavour):

- Collect relevant information of jet constituents, both designed features for tagging and more raw features
- Design a custom DNN structure that is able to deal with the large input by using domain knowledge

Include more classes, regression (DeepJet):

- quark flavours, quark/gluon, jet p_T, ...
 - Correlations between tagging of different IDs and even p_T are taken correctly into account
 - + Multi-class more flexible and takes correlations of inputs and outputs into account.
- NN can do multi-class classification easily, simpler than training many binary classifiers and combining these

Inputs from jets

- All Particles candidates (separate for charged and neutral) of a jet
- Secondary vertices' of inclusive vertex finder in jet cone
- We sort these the above by displacement or (if not displaced) by P_T

Extract features from particles/vertices

Input from each particle:

- High level features:
 - CSV variables
- Lower level features:
 - like χ^2

- Secondary vertices and particles are feed through multiple convolutional layers
- These layers transform the large input of "likely useful" features of a particle to a smaller set of features optimal to minimize the loss
- Scales well with adding more features per particles, because it hardly increase complexity of model

Generic custom DNN for jets

- The RNN (LSTM) layer improved the performance ~ 1%
- Key new element are the multilayer DNN (CNN) on particle level

Training sample

80M tt and QCD jets

 → Largely over-constrained (>> more sample than model parameters), hardly regularization needed
 → Operate in the "data plateau", 20M < 40M ≤ 80M

→ Optimal DNN strategy depends on availability data, jet reconstruction we have O(100) M

Just more information

 Just adding more information, nodes and layers (+2) did degrade performance (DeepCSV→noConv)

- Adding the convolution *and* more information improves performance (noConv→DeepFlavour)
- Adding RNN "only" helps ~ 1% (not shown)

- A well-known problem: flavour tagging degrades as momentum increases
- The effect is largely reduced by DeepFlavour

DeepCSV vs. DeepFlavour

- At high momentum: at a DeepCSV fake rate of 1%, we obtain the same b tag efficiency for 10 times smaller bkg
- Alternatively: 50% more efficient at same 1% fake rate
- DeepFlavour recovers much of the degradation at high momentum

DeepJet

DeepFlavour + q/g → DeepJet

Investigate a few custom DNN q/g tagging:

Recurrent for q/g:

2D convolutional, four channels (CNN as in 1612.01551):

Comparisons of DNNs

- We filter on *generator* level only light quarks and gluons that did **NOT** split to heavy flavour.
- All DNN used in binary mode

- → Generic DeepFlavour and custom q/g gave very similar results!
- → Data is multi-class, without heavy flavour removel DeepJet was clearly best
 ¹⁴

Next steps

What is the target (loss)?

Simulation: huge well labeled dataset at all phase-spaces \rightarrow Ideal to train big DNN!

We train&aim at MC with labels

What is the target (loss)?

But **data** might be somewhere else

We train in simulation

- Need to move also the target!
- Ideally maintain advantages of well labeled MC!

Toy example

- Data (worse) half the horizontal resolution around circle
- We might know start/circle ratio in data, but not have individual labels

New target

- Classify the huge well labeled
 MC optimally
- Make it impossible to tell from the output that is was MC (given you know start/circle ration in data)

New proposal: Hybrid loss, add term to loss that enhances independence of output from *data* and *mc*

MS

Enhance Independence

→ Approximate independence test: any slice of a 2D histogram looks the same, but better use moments of output for technical reasons (efficient in loss calculation)

Loss = Loss +
$$\lambda \sum_{i=0}^{i=n} \frac{1}{m} \sum_{j=1}^{j=m} \sqrt{(\frac{M_{ij}}{M_{aj}} - 1)^2}$$

- M_j is the moment j of the output

New proposal: Use *analytical* stringent necessary condition for independence (e.g. moments of different bins) as penalty term in loss to enhance independence.

MS

Toy Results

- Train with mc (mc)
- Retrain with mc adding the moment loss to enhance data and MC output agreement (mc+f^{data}). Assume to know star/circle ratio in data!
- Train using data *labels* (data)

Hybrid Loss achieved same performance as individually **labeled** data

Proposal: Pre-train with MC (high stats, good labels) and fine-tune with data (lower stats, average or approximate labels)

MS

Summary

DeepCSV:

- Deep learned multi-label flavour tagger, which is the recommended CMS tagger 2017
- Used with success in 2016 analysis in data

DeepJet:

- Developed new generic DNN structure for jets reconstruction, that incorporates extensive information from all jet constituents
- Performs best CMS simulation in all categories
- Working other cone sizes and regression

Data/MC:

Working on *new* methods to incorporate data/mc differences in overall strategy