Deep learning in jet reconstruction at CMS

Markus Stoye1,2 for the CMS collaboration
CERN1, ITN aMVA4newphysics2

ACAT, 22nd August 2017
Content

DeepCSV:
• Heavy-flavor jet-tagger with human engineered variables and track pre-selections for heavy flavor tagging

DeepJet:
• Jet-tagger (heavy flavor, quark/gluon) using more raw information from jet constituent

Data/MC
• Some new strategy proposals (not CMS)
DeepCSV
Inspired by this we defined 4 exclusive categories:

- Exactly **one b hadron** in the jet
- Exactly **one c hadron**, with no b-hadron in the jet
- **Two** or more **b hadrons** in jet
- Light quark/gluon jets (udsg)

→ Jet flavour tagging is **intrinsically** a multi-class classification problem
DeepCSV input features
(for detailed list of acronyms: BTV 15-001)

Per jet (sample):
['jet_pt', 'jet_eta', 'jetNSecondaryVertices', 'trackSumJetEtRatio',
'trackSumJetDeltaR', 'vertexCategory',
'trackSip2dValAboveCharm', 'trackSip2dSigAboveCharm', 'trackSip3dValAboveCharm',
'trackSip3dSigAboveCharm', 'jetNSelectedTracks', 'jetNTracksEtaRel']

Per 1st 6(4) tracks (impact parameter sorted, pre-selected):
['trackJetDistVal', 'trackPtRel', 'trackDeltaR', 'trackPtRatio', 'trackSip3dSig', 'trackSip2dSig',
'trackDecayLenVal', 'TagVarCSV_trackEtaRel']

From 1st secondary vertex:
['vertexMass', 'vertexNTracks', 'vertexEnergyRatio', 'vertexJetDeltaR',
'flightDistance2dVal', 'flightDistance2dSig', 'flightDistance3dVal', 'flightDistance3dSig'],

• Same variables used for the former standard CMS tagger “CSVv2”
• Red are changes with respect to CSVv2, i.e. DeepCSV uses slightly (factor 2) more
Training Strategy

Three aims:
- A generic tagger: use admixture of different processes that produce heavy flavour
- Robust tagger: train including realistic special cases, e.g. we do keep jets with accidental lepton overlap
- Optimal training: Large jets sample to avoid over-fitting

- QCD and tt for training
- 50M jets!
DeepCSV: DNN details

Good results achieved with relative dense DNN structure
• DeepCSV does not use muons to allow for more validation option. With muons (as in cMVA) performance improves further
• At 0.1% light fake rate, 20% (40%→50%) more efficient for b-jets
• At 1% CSVv2 b-jet efficiency 40% less fake rate
• For 0.1% fake rate: new pixel and new software lead to same gain, for 1% fake rate, software gain 40% of new hardware and more than hardware for b vs. c-jets

Big performance improvements
DeepCSV best c-tag performance

Note, the c-tagger uses some lepton information

• Default c-tagger is binary, i.e. trained on b vs c only.
• DeepCSV can be made binary \(p'(b) + p'(c) = 1 \) after the training by:

\[
p'(c) = \frac{p(c)}{p(c) + p(b)}
\]
Three CMS taggers become one:

- **CSVv2** (b vs. light & c with given c/light ratio), **c-tag** (c vs light) and **c-tag** (c vs b) → **DeepCSV** multi-class tagger

Tagging simplified by single tagger
Performance in real data

36 fb$^{-1}$, $\sqrt{s} = 13$ TeV, 2016

CMS Preliminary

Save data/simulation agreement
Application in physics analysis

SUS-16-044:
Search for events with two h->bb and MET

\[2b = N_{b,T} = 2, \quad N_{b,M} = 2 \]
\[3b = N_{b,T} \geq 2, \quad N_{b,M} = 3, \quad N_{b,L} = 3 \]
\[4b = N_{b,T} \geq 2, \quad N_{b,M} \geq 3, \quad N_{b,L} \geq 4 \]

<table>
<thead>
<tr>
<th>CSVv2 (L = 35.9 \text{ fb}^{-1})</th>
<th>All SM bkg.</th>
<th>TChiHH ((225.1))</th>
<th>TChiHH ((700.1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 2b)</td>
<td>–</td>
<td>3761.5</td>
<td>33.7</td>
</tr>
<tr>
<td>(\geq 3b)</td>
<td>–</td>
<td>1999.1</td>
<td>19.0</td>
</tr>
<tr>
<td>(4b)</td>
<td>–</td>
<td>860.0</td>
<td>9.3</td>
</tr>
<tr>
<td>Baseline, (\geq 2b)</td>
<td>2600.1±101.0</td>
<td>75.6</td>
<td>7.7</td>
</tr>
<tr>
<td>Baseline, (\geq 3b)</td>
<td>276.9±5.5</td>
<td>49.6</td>
<td>5.4</td>
</tr>
<tr>
<td>Baseline, 4b</td>
<td>72.2±4.1</td>
<td>30.9</td>
<td>3.6</td>
</tr>
<tr>
<td>Baseline, (p_T^{miss} > 300, \geq 2b)</td>
<td>104.2±2.4</td>
<td>2.8</td>
<td>6.0</td>
</tr>
<tr>
<td>Baseline, (p_T^{miss} > 300, \geq 3b)</td>
<td>12.0±0.8</td>
<td>2.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Baseline, (p_T^{miss} > 300, 4b)</td>
<td>4.0±0.4</td>
<td>1.7</td>
<td>2.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DeepCSV (L = 35.9 \text{ fb}^{-1})</th>
<th>All SM bkg.</th>
<th>TChiHH ((225.1))</th>
<th>TChiHH ((700.1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 2b)</td>
<td>–</td>
<td>4625.6</td>
<td>39.7</td>
</tr>
<tr>
<td>(\geq 3b)</td>
<td>–</td>
<td>2548.7</td>
<td>24.1</td>
</tr>
<tr>
<td>(4b)</td>
<td>–</td>
<td>1149.1</td>
<td>12.7</td>
</tr>
<tr>
<td>Baseline, (\geq 2b)</td>
<td>3650.5±90.2</td>
<td>95.1</td>
<td>9.9</td>
</tr>
<tr>
<td>Baseline, (\geq 3b)</td>
<td>385.2±9.0</td>
<td>68.6</td>
<td>7.4</td>
</tr>
<tr>
<td>Baseline, 4b</td>
<td>94.3±5.3</td>
<td>43.4</td>
<td>5.1</td>
</tr>
<tr>
<td>Baseline, (p_T^{miss} > 300, \geq 2b)</td>
<td>144.8±2.8</td>
<td>4.0</td>
<td>7.7</td>
</tr>
<tr>
<td>Baseline, (p_T^{miss} > 300, \geq 3b)</td>
<td>16.3±0.8</td>
<td>2.9</td>
<td>5.7</td>
</tr>
<tr>
<td>Baseline, (p_T^{miss} > 300, 4b)</td>
<td>4.6±0.4</td>
<td>2.5</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Significant Improvement: e.g. up to \(~50\%\) more signal for 15\% more bkg
\(\rightarrow \) Significantly improved lower mass limit (150 GeV in Higgsino mass)
DeepFlavour
DeepFlavour & DeepJet

Include more raw data (DeepFlavour):
• Collect relevant information of jet constituents, both designed features for tagging and more raw features
• Design a custom DNN structure that is able to deal with the large input by using domain knowledge

Include more classes, regression (DeepJet):
• quark flavours, quark/gluon, jet p_T, …
 + Correlations between tagging of different IDs and even p_T are taken correctly into account
 + Multi-class more flexible and takes correlations of inputs and outputs into account.

• NN can do multi-class classification easily, simpler than training many binary classifiers and combining these
Inputs from jets

- All Particles candidates (separate for charged and neutral) of a jet
- Secondary vertices' of inclusive vertex finder in jet cone
- We sort these the above by displacement or (if not displaced) by P_T
Extract features from particles/vertices

Input from each particle:

- High level features:
 - CSV variables
- Lower level features:
 - like χ^2

- Secondary vertices and particles are feed through multiple convolutional layers
- These layers transform the large input of “likely useful” features of a particle to a smaller set of features optimal to minimize the loss
- Scales well with adding more features per particles, because it hardly increase complexity of model
Generic custom DNN for jets

Input features: 631

- up to 25x charged part. 18
- up to 25x neutral part. 6
- up to 4x sec. vert. 12
- global, 15

Output features:

- ~250,000 model parameters

- The RNN (LSTM) layer improved the performance ~ 1%
- Key new element are the multilayer DNN (CNN) on particle level
→ Largely over-constrained (>> more sample than model parameters), hardly regularization needed
→ Operate in the “data plateau”, 20M < 40M ≲ 80M

→ Optimal DNN strategy depends on availability data, jet reconstruction we have O(100) M
Just adding more information, nodes and layers (+2) did degrade performance (DeepCSV → noConv)
• Adding the convolution \textit{and} more information improves performance (\textit{noConv} \rightarrow DeepFlavour)
• Adding RNN “only” helps \sim 1\% (not shown)
DeepCSV vs. DeepFlavour

- A well-known problem: flavour tagging degrades as momentum increases
- The effect is largely reduced by DeepFlavour
DeepCSV vs. DeepFlavour

- At high momentum: at a DeepCSV fake rate of 1%, we obtain the same b tag efficiency for 10 times smaller bkg
- Alternatively: 50% more efficient at same 1% fake rate
- DeepFlavour recovers much of the degradation at high momentum
DeepJet
DeepFlavour + q/g → DeepJet

Investigate a few custom DNN q/g tagging:

Recurrent for q/g:

- **Input features, \(p_T \) descending:**
 - up to 25 charged
 - \(p_T^{\text{rel}}, \Delta \eta, \Delta \phi, p_W \)
 - up to 25 neutrals
 - \(p_T^{\text{rel}}, \Delta \eta, \Delta \phi, p_W \)
 - global
 - \(p_T, \eta, N_{\text{ch}}, N_{\text{neu}} \)

2D convolutional, four channels (CNN as in 1612.01551):

- \(\Sigma p_T^{\text{rel}} \)
- \(N_{\text{ch}} \)
- \(\Sigma p_T^{\text{rel}} \)
- \(N_{\text{neu}} \)

\(p_T^{\text{rel}} \), \(\Delta \eta \), \(\Delta \phi \), \(p_W \)

RNN(LSTM) → Dense

- 100
- 200, 5x100

\(p_W \) as in 1407.6013

Investigate a few custom DNN q/g tagging:
Comparisons of DNNs

- We filter on \textit{generator} level only light quarks and gluons that did \textbf{NOT} split to heavy flavour.
- All DNN used in binary mode

\begin{itemize}
 \item \textbf{Generic DeepFlavour} and custom q/g gave very similar results!
 \item Data is multi-class, without heavy flavour removal DeepJet was clearly best
\end{itemize}
Next steps
What is the target (loss)?

Simulation: huge well labeled dataset at all phase-spaces → Ideal to train big DNN!

We train&aim at MC with labels
What is the target (loss)?

We train in simulation

• Need to move also the target!
• Ideally maintain advantages of well labeled MC!

But data might be somewhere else
Toy example

- Data (worse) half the horizontal resolution around circle
- We might know start/circle ratio in data, but not have individual labels
New target

- Classify the huge well labeled MC optimally
- Make it impossible to tell from the output that is was MC (given you know start/circle ration in data)

New proposal: Hybrid loss, add term to loss that enhances independence of output from data and mc
Enhance Independence

→ Approximate independence test: any slice of a 2D histogram looks the same, but better use moments of output for technical reasons (efficient in loss calculation)

\[
\text{Loss} = \text{Loss} + \lambda \sum_{i=0}^{n} \frac{1}{m} \sum_{j=1}^{m} \sqrt{\left(\frac{M_{ij}}{M_{aj}} - 1\right)^2}
\]

• \(i\) is the index of the classes (data or MC) or e.g. bin of a histogram with \(n\) bins, \(a\) stands for all
• \(M_j\) is the moment \(j\) of the output

New proposal: Use *analytical* stringent necessary condition for independence (e.g. moments of different bins) as penalty term in loss to enhance independence.
Toy Results

- Train with mc (mc)
- Retrain with mc adding the moment loss to enhance data and MC output agreement (mc+f_{data}). Assume to know star/circle ratio in data!
- Train using data labels (data)

Proposal: Pre-train with MC (high stats, good labels) and fine-tune with data (lower stats, average or approximate labels)

Hybrid Loss achieved same performance as individually labeled data
Summary

DeepCSV:
• Deep learned multi-label flavour tagger, which is the recommended CMS tagger 2017
• Used with success in 2016 analysis in data

DeepJet:
• Developed new generic DNN structure for jets reconstruction, that incorporates extensive information from all jet constituents
• Performs best CMS simulation in all categories
• Working other cone sizes and regression

Data/MC:
• Working on new methods to incorporate data/mc differences in overall strategy