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Content

DeepCSV:
• Heavy-flavor jet-tagger with human engineered 

variables and track pre-selections for heavy flavor 
tagging

DeepJet:
• Jet-tagger (heavy flavor, quark/gluon)  using more 

raw information from jet constituent

Data/MC
• Some new strategy proposals (not CMS)
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DeepCSV



Inspired by this we defined 4 exclusive categories:
• Exactly one b hadron in the jet
• Exactly one c hadron, with no b-hadron in the jet
• Two or more b hadrons in jet
• Light quark/gluon jets (udsg)

3

Jet flavour tagging

® Jet flavour tagging is intrinsically a multi-class 
classification problem

q = c or b
QCD: SUSY:

4 bs in 
separate 
jetsOften two b-hadron in a single 

AK4 jet for gluon splitting
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DeepCSV input features

['jet_pt', 'jet_eta','jetNSecondaryVertices', 'trackSumJetEtRatio', 
'trackSumJetDeltaR','vertexCategory', 
'trackSip2dValAboveCharm’,'trackSip2dSigAboveCharm', 'trackSip3dValAboveCharm', 
'trackSip3dSigAboveCharm', 'jetNSelectedTracks','jetNTracksEtaRel']

Per jet (sample):

Per 1st 6(4) tracks (impact parameter sorted, pre-selected):
['trackJetDistVal','trackPtRel','trackDeltaR’,'trackPtRatio','trackSip3dSig','trackSip2dSig','
trackDecayLenVal’,'TagVarCSV_trackEtaRel']

From 1st secondary vertex:
['vertexMass','vertexNTracks','vertexEnergyRatio','vertexJetDeltaR','flightDistance2dVal','flightDistanc
e2dSig','flightDistance3dVal','flightDistance3dSig'],

• Same variables used for the former standard CMS tagger 
“CSVv2”

• Red are changes with respect to CSVv2, i.e. DeepCSV uses 
slightly (factor 2) more 

(for detailed list of acronyms: BTV 15-001) 
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Training Stratgy

Three aims:
• A generic tagger: use admixture of different processes 

that produce heavy flavour
• Robust tagger: train including realistic special cases, 

e.g. we do keep jets with accidental lepton overlap
• Optimal training: Large jets sample to avoid over-

fitting

• QCD and tt for training
• 50M jets!
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dense

5x100
sec. vert. 8 

charged part. 8

global, 12 

b
bb
c
l

Input (displ. sort.)

up to 6x
up to 1x

output

DeepCSV: DNN details

Good results achieved with relative dense DNN structure
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Performance

• DeepCSV does not use muons to allow for more validation option. With 
muons (as in cMVA) performance improves further

• At 0.1% light fake rate, 20% (40%→50%) more efficient for b-jets
• At 1% CSVv2 b-jet efficiency 40% less fake rate
• For 0.1% fake rate: new pixel and new software lead to same gain, for 1% 

fake rate, software gain 40% of new hardware and more than hardware for b 
vs. c-jets

DPS-2017-013DPS-2017-005

Big performance improvements

☆

☆

☆

☆
☆

☆
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• DeepCSV best c-tag performance
• Note, the c-tagger uses some lepton information
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ROC for c vs b

p(c)
p(c)+p(b)
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• Default c-tagger is 
binary, i.e. trained on b 
vs c only.

• DeepCSV can be made 
binary (p’(b)+p’(c)=1)
after the training by:



ROC c vs. light
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Three CMS taggers become one:
• CSVv2 (b vs. light&c with given c/light ratio), c-tag (c vs 

light) and c-tag (c vs b) ® DeepCSV multi-class tagger

Tagging simplified by single tagger



Performance in real data

bData/Simulation SF
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10
Save data/simulation agreement



Application in physics analysis
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CSVv2 TChiHH TChiHH

L = 35.9 fb�1 All SM bkg. (225,1) (700,1)

� 2b – 3761.5 33.7

� 3b – 1999.1 19.0

4b – 860.0 9.3

Baseline, � 2b 2600.1±101.0 75.6 7.7

Baseline, � 3b 276.9±5.5 49.6 5.4

Baseline, 4b 72.2±4.1 30.9 3.6

Baseline, pmiss
T > 300, � 2b 104.2±2.4 2.8 6.0

Baseline, pmiss
T > 300, � 3b 12.9±0.8 2.4 4.2

Baseline, pmiss
T > 300, 4b 4.0±0.4 1.7 2.8

DeepCSV TChiHH TChiHH

L = 35.9 fb�1 All SM bkg. (225,1) (700,1)

� 2b – 4625.6 39.7

� 3b – 2548.7 24.1

4b – 1149.1 12.7

Baseline, � 2b 3650.5±90.2 95.1 9.9
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Baseline, pmiss
T > 300, � 3b 16.3±0.8 3.2 5.7

Baseline, pmiss
T > 300, 4b 4.6±0.4 2.5 4.0

Comparison of CSVv2 and DeepCSV

Comparison of the total background and signal yields in simulation for selections based on CSVv2 (left) and DeepCSV (right) in the context 
of the SUS-16-044 analysis. Two benchmark TChiHH points with Higgsino masses of 225 GeV and 700 GeV, and Goldstino mass of 1 GeV 
are shown. The yields for the three b-tag categories are shown for three cases: prior to any selection, after the baseline, and in the high-
pT

miss region where the sensitivity to high mass Higgsinos is enhanced. The background is dominated by events with 2 true b quarks, while 
the signal has 4 b quarks. Compared to CSVv2, the high b-tagging efficiency of the DeepCSV algorithm extends the expected exclusion 
limit by approximately 150 GeV in the Higgsino mass, corresponding to a cross-section that is 3 times smaller. This gain in mass reach is 
aided by the increasingly more favorable kinematics of the signal at higher Higgsino masses.
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1. Use the 4 jets with highest b-tag discriminant to construct 3 
possible H1H2 pairings

2. Select H1H2 pair minimizing mass difference:
3. Define ∆Rmax as the larger of the opening angle between the two 

b-quarks for H1 and H2

SUS-16-044: Analysis definitions

�m = |mH1 �mH2 |

Higgs reconstruction

Objects

2b ≡ Nb,T = 2, Nb,M = 2

3b ≡ Nb,T ≥ 2, Nb,M = 3, Nb,L = 3

4b ≡ Nb,T ≥ 2, Nb,M ≥ 3, Nb,L ≥ 4

b-tag categories

Search for Higgsinos in the context of GMSB in 
the HH+MET final state, where the Higgs bosons  
are reconstructed in their h→ bb decay.

Overview

• No veto leptons or tracks
• 4 or 5 jets, at least 2 tight b-tags
• pTmiss > 150 GeV
• ∆!1,2 > 0.5, ∆!3,4 > 0.3, where ∆!i ≡ ∆R(pTmiss, ith jet)
• ∆m < 40 GeV, ∆Rmax < 2.2 

Baseline event selection

P1

P2

χ̃0
1

χ̃0
1

h

G̃

G̃

h

Nominal search performed in 
Higgs boson mass window in 

the 3b and 4b categories 
defined based on DeepCSV

6 3 Object and variable definitions

to have pT > 10 GeV (pT > 20 GeV) and |h| < 2.5, and to satisfy identification criteria—98

corresponding the veto (medium) working point as defined by the EGAMMA POG—designed99

to minimize any misidentification of light-parton jets, photon conversions, and electrons from100

heavy flavor hadron decays as prompt electrons. Muons are reconstructed by associating tracks101

in the muon system with those found in the silicon tracker [13]. Veto (signal) muon candidates102

are required to satisfy pT > 10 GeV (pT > 20 GeV) and |h| < 2.4 and the medium working point103

as defined by the MUON POG.104

To preferentially select leptons that originate in the decay of W and Z bosons, leptons are re-105

quired to be isolated from other PF candidates. Isolation is quantified using an optimized ver-106

sion of the “mini-isolation” variable originally suggested in Ref. [14], in which the transverse107

energy of the particles within a cone in h-f space surrounding the lepton momentum vector108

is computed using a cone size that scales as 1/p`
T, where p`

T is the transverse momentum of109

the lepton. In this analysis, mini-isolation, Irel
mini = Imini/p`

T, is defined as the transverse energy110

Imini of particles in a cone of radius Rmini-iso around the lepton, divided by p`
T. The transverse111

energy Imini is computed as the scalar sum of the pT values of the charged hadrons from the PV,112

neutral hadrons, and photons. The last term is a correction that estimates the average amount113

of pileup energy near the leptons by taking the contribution from charged candidates not orig-114

inating from the primary vertex and multiplying by 1
2 to account for the average difference in115

neutral and charged contributions from pileup.116

The cone radius Rmini-iso varies with the p`
T according to

Rmini-iso =

8
>><

>>:

0.2, p`
T  50 GeV

10 GeV
p`

T
, p`

T 2 (50 GeV, 200 GeV)

0.05, p`
T � 200 GeV.

(1)

The 1/p`
T dependence is motivated by considering a two-body decay of a massive parent par-117

ticle with mass M and large pT, for which the angular separation of the daughter particles118

is roughly DRdaughters ⇡ 2M/pT. The pT-dependent cone size reduces the rate of accidental119

overlaps between the lepton and jets in high-multiplicity or highly Lorentz-boosted events,120

particularly overlaps between b jets and leptons originating from a boosted top quark. The121

cone remains large enough to contain b-hadron decay products for non-prompt leptons across122

a range of p`
T values. Muons (electrons) must satisfy Irel

mini < 0.2 (0.1). The combined efficiency123

for the signal electron reconstruction and isolation requirements is about 50% at a p`
T of 20 GeV,124

increasing to 65% at 50 GeV and reaching a plateau of 80% above 200 GeV. The combined recon-125

struction and isolation efficiencies for signal muons are about 70% at a p`
T of 20 GeV, increasing126

to 80% at 50 GeV and reaching a plateau of 95% at 200 GeV.127

As already noted in Section 1, the dominant background in the analysis arises from tt single-128

lepton events in which the lepton is a t decaying hadronically or is a light lepton that is not129

Table 2: Summary of object selection requirements.

Object pT [GeV] |h| Other
Jets 30 2.4 Anti-kt R=0.4, cleaned from leptons
Veto electrons 10 2.5 Cut-based Veto ID, Imini < 0.1
Veto muons 10 2.4 Medium ID, Imini < 0.2
Lepton tracks 5 2.4 Itk < 0.2, mT(tk, pmiss

T ) < 100 GeV
Hadronic tracks 10 2.4 Itk < 0.1, mT(tk, pmiss

T ) < 100 GeV

SUS-16-044:
Search for events with two h->bb and MET

1. Use the 4 jets with highest b-tag discriminant to construct 3 
possible H1H2 pairings

2. Select H1H2 pair minimizing mass difference:
3. Define ∆Rmax as the larger of the opening angle between the two 

b-quarks for H1 and H2
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b-tag categories

Search for Higgsinos in the context of GMSB in 
the HH+MET final state, where the Higgs bosons  
are reconstructed in their h→ bb decay.

Overview

• No veto leptons or tracks
• 4 or 5 jets, at least 2 tight b-tags
• pTmiss > 150 GeV
• ∆!1,2 > 0.5, ∆!3,4 > 0.3, where ∆!i ≡ ∆R(pTmiss, ith jet)
• ∆m < 40 GeV, ∆Rmax < 2.2 
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Nominal search performed in 
Higgs boson mass window in 

the 3b and 4b categories 
defined based on DeepCSV

6 3 Object and variable definitions

to have pT > 10 GeV (pT > 20 GeV) and |h| < 2.5, and to satisfy identification criteria—98

corresponding the veto (medium) working point as defined by the EGAMMA POG—designed99

to minimize any misidentification of light-parton jets, photon conversions, and electrons from100

heavy flavor hadron decays as prompt electrons. Muons are reconstructed by associating tracks101

in the muon system with those found in the silicon tracker [13]. Veto (signal) muon candidates102

are required to satisfy pT > 10 GeV (pT > 20 GeV) and |h| < 2.4 and the medium working point103

as defined by the MUON POG.104

To preferentially select leptons that originate in the decay of W and Z bosons, leptons are re-105

quired to be isolated from other PF candidates. Isolation is quantified using an optimized ver-106

sion of the “mini-isolation” variable originally suggested in Ref. [14], in which the transverse107

energy of the particles within a cone in h-f space surrounding the lepton momentum vector108

is computed using a cone size that scales as 1/p`
T, where p`

T is the transverse momentum of109

the lepton. In this analysis, mini-isolation, Irel
mini = Imini/p`

T, is defined as the transverse energy110

Imini of particles in a cone of radius Rmini-iso around the lepton, divided by p`
T. The transverse111

energy Imini is computed as the scalar sum of the pT values of the charged hadrons from the PV,112

neutral hadrons, and photons. The last term is a correction that estimates the average amount113

of pileup energy near the leptons by taking the contribution from charged candidates not orig-114

inating from the primary vertex and multiplying by 1
2 to account for the average difference in115

neutral and charged contributions from pileup.116

The cone radius Rmini-iso varies with the p`
T according to

Rmini-iso =

8
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The 1/p`
T dependence is motivated by considering a two-body decay of a massive parent par-117

ticle with mass M and large pT, for which the angular separation of the daughter particles118

is roughly DRdaughters ⇡ 2M/pT. The pT-dependent cone size reduces the rate of accidental119

overlaps between the lepton and jets in high-multiplicity or highly Lorentz-boosted events,120

particularly overlaps between b jets and leptons originating from a boosted top quark. The121

cone remains large enough to contain b-hadron decay products for non-prompt leptons across122

a range of p`
T values. Muons (electrons) must satisfy Irel

mini < 0.2 (0.1). The combined efficiency123

for the signal electron reconstruction and isolation requirements is about 50% at a p`
T of 20 GeV,124

increasing to 65% at 50 GeV and reaching a plateau of 80% above 200 GeV. The combined recon-125

struction and isolation efficiencies for signal muons are about 70% at a p`
T of 20 GeV, increasing126

to 80% at 50 GeV and reaching a plateau of 95% at 200 GeV.127

As already noted in Section 1, the dominant background in the analysis arises from tt single-128

lepton events in which the lepton is a t decaying hadronically or is a light lepton that is not129

Table 2: Summary of object selection requirements.

Object pT [GeV] |h| Other
Jets 30 2.4 Anti-kt R=0.4, cleaned from leptons
Veto electrons 10 2.5 Cut-based Veto ID, Imini < 0.1
Veto muons 10 2.4 Medium ID, Imini < 0.2
Lepton tracks 5 2.4 Itk < 0.2, mT(tk, pmiss

T ) < 100 GeV
Hadronic tracks 10 2.4 Itk < 0.1, mT(tk, pmiss

T ) < 100 GeV

Significant Improvement: e.g. up to ~50% more signal for 15% more bkg
® Significantly improved lower mass limit (150 GeV in Higgsino mass)
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DeepFlavour
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DeepFlavour & DeepJet
Include more raw data (DeepFlavour):
• Collect relevant information of jet constituents, both designed 

features for tagging and more raw features
• Design a custom DNN structure that is able to deal with the large 

input by using domain knowledge

Include more classes, regression (DeepJet):
• quark flavours, quark/gluon, jet pT, …

+ Correlations between tagging of different IDs and even pT are taken 
correctly into account

+ Multi-class more flexible and takes correlations of inputs and outputs 
into account.

• NN can do multi-class classification easily, simpler than 
training many binary classifiers and combining these
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Inputs from jets

• All Particles candidates (separate for charged and neutral) 
of a jet

• Secondary vertices' of inclusive vertex finder in jet cone
• We sort these the above by displacement or (if not 

displaced) by PT
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Extract features from particles/vertices

Input from each particle:

• High level features:
• CSV variables 

• Lower level features:
• like c2

• Secondary vertices and particles are feed through multiple 
convolutional layers

• These layers transform the large input of “likely useful” 
features of a particle to a smaller set of features optimal to 
minimize the loss

• Scales well with adding more features per particles, because 
it hardly increase complexity of model
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Generic custom DNN for jets

64, 32, 32, 8

CNN Dense

200, 6x100
neutral part. 6

charged part. 18

global, 15 

sec. vert. 12

b
bb
c
l
g

Input features: 

up to 25x
up to 25x
up to 4x

Output

32,16, 4

RNN

150

50

50

631 411 265 100® ® ®

• The RNN (LSTM) layer improved the performance ~ 1%
• Key new element are the multilayer DNN (CNN) on 

particle level 

~250.000 model parameters

Nnodes NnodesNout

64, 32, 32, 8
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Training sample
80M tt and QCD jets

➝ Largely over-constrained (>> 
more sample than model 
parameters), hardly 
regularization needed

➝ Operate in the “data plateau”, 
20M < 40M ≲ 80M

1997), decision lists (Yarowsky, 1994), and a 
variety of Bayesian classifiers (Gale et al., 1993, 
Golding, 1995, Golding and Schabes, 1996).  In 
all of these approaches, the problem is 
formulated as follows:  Given a specific 
confusion set (e.g. {to,two,too}), all occurrences 
of confusion set members in the test set are 
replaced by a marker;  everywhere the system 
sees this marker, it must decide which member 
of the confusion set to choose.   
 Confusion set disambiguation is one of a 
class of natural language problems involving 
disambiguation from a relatively small set of 
alternatives based upon the string context in 
which the ambiguity site appears.  Other such 
problems include word sense disambiguation, 
part of speech tagging and some formulations of 
phrasal chunking.  One advantageous aspect of 
confusion set disambiguation, which allows us 
to study the effects of large data sets on 
performance, is that labeled training data is 
essentially free, since the correct answer is 
surface apparent in any collection of reasonably 
well-edited text.  
 

3 Learning Curve Expe riments 

This work was partially motivated by the desire 
to develop an improved grammar checker.  
Given a fixed amount of time, we considered 
what would be the most effective way to focus 
our efforts in order to attain the greatest 
performance improvement.  Some possibilities 
included modifying standard learning 
algorithms, exploring new learning techniques, 
and using more sophisticated features.  Before 
exploring these somewhat expensive paths, we 
decided to first see what happened if we simply 
trained an existing method with much more 
data.  This led to the exploration of learning 
curves for various machine learning algorithms : 
winnow1, perceptron, naïve Bayes, and a very 
simple memory-based learner.  For the first 
three learners, we used the standard collection of 
features employed for this problem: the set of 
words within a window of the target word, and 
collocations containing words and/or parts of 

                                                                 
1 Thanks to Dan Roth for making both Winnow and 
Perceptron available. 

speech.  The memory-based learner used only 
the word before and word after as features. 
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Figure 1. Learning Curves for Confusion Set 

Disambiguation 
 
 We collected a 1-billion-word training 
corpus from a variety of English texts, including 
news articles, scientific abstracts, government 
transcripts, literature and other varied forms of 
prose.  This training corpus is three orders of 
magnitude greater than the largest training 
corpus previously used for this problem.  We 
used 1 million words of Wall Street Journal text 
as our test set, and no data from the Wall Street 
Journal was used when constructing the training 
corpus. Each learner was trained at several 
cutoff points in the training corpus, i.e. the first 
one million words, the first five million words, 
and so on, until all one billion words were used 
for training. In order to avoid training biases that 
may result from merely concatenating the 
different data sources to form a larger training 
corpus, we constructed each consecutive 
training corpus by probabilistically sampling 
sentences from the different sources weighted 
by the size of each source. 
 In Figure 1, we show learning curves for 
each learner, up to one billion words of training 
data.  Each point in the graph is the average 
performance over ten confusion sets for that size 
training corpus.  Note that the curves appear to 
be log-linear even out to one billion words. 
 Of course for many problems, additional 
training data has a non-zero cost.  However, 

Banko&Brill

worst

best

➝ Optimal DNN strategy depends on 
availability data, jet reconstruction we have 
O(100) M
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• Just adding more information, nodes and layers (+2) did 
degrade performance (DeepCSV→noConv)

Just more information

DP-2017-013
☆ ☆
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• Adding the convolution and more information improves 
performance (noConv→DeepFlavour) 

• Adding RNN “only” helps ~ 1% (not shown)

Adding CNNs

DP-2017-013
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DeepCSV vs. DeepFlavour

• A well-known problem: flavour tagging degrades as 
momentum increases

• The effect is largely reduced by DeepFlavour

DP-2017-013
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DeepCSV vs. DeepFlavour

• At high momentum: at a DeepCSV fake rate of 1%, we 
obtain the same b tag efficiency for 10 times smaller bkg

• Alternatively: 50% more efficient at same 1% fake rate
• DeepFlavour recovers much of the degradation at high 

momentum

DP-2017-013
DP-2017-013
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DeepJet
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RNN(LSTM)
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Figure 2. An illustration of the deep convolutional neural network architecture. The first layer is
the input jet image, followed by three convolutional layers, a dense layer and an output layer.

Only moderate optimization of the network architecture and minimal hyperparameter-

tuning were performed in this study. This optimization included exploration of different

optimizers (Adam, Adadelta, RMSprop), filter sizes, number of filters, activation functions

(ReLU, tanh), and regularization (dropout, L2-regularization), though this exploration was

not exhaustive. Further systematic exploration of the space of architectures and hyperpa-

rameter values, such as with Bayesian optimization using Spearmint [51], might increase

the performance of the deep neural network.

3.3 Jet images in color

All implementations of the jet images machine learning approach that we know of take as

the input image a grid where the input layer contains the pre-processed energy or transverse

momentum in a particular angular region. This can be thought of as a grayscale image,

with only intensity in each pixel and all color information discarded. In computer vision

– 8 –

2D convolutional, four channels (CNN as in 1612.01551): 

pT
rel, Dh, Df, pWup to 25 charged 100

up to 25 neutrals

global

pT, h, Nch, Nnglobal

SpT
rel

Nch
SpT

rel

Nneu

ch

neu

pW as in 1407.6013

DeepFlavour + q/g → DeepJet
Investigate a few custom DNN q/g tagging: 
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Light quark efficiency
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Performance of the DeepJet multi classification algorithm, the recurrent and the convolutional 
approach, demonstrating the probability for gluon jets to be misidentified as a light quark (uds) jet, 
as a function of the efficiency to correctly identify light quark jets. The curves are obtained on 
simulated QCD events with p̂T between 600 and 800 GeV and using jets with a pT above 500 GeV. 
The absolute performance in this figure serves as an illustration since the light quark jet 
identification efficiency depends on the pT and η distribution of the jets, the event topology, the 
flavour composition of the sample, and the generator used. All curves are obtained using Pythia8. 
Jets that originate from a gluon splitting to cc or bb quarks are not considered gluon jets.
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Performance of the DeepJet multi classification algorithm, the recurrent and the convolutional 
approach, demonstrating the probability for gluon jets to be misidentified as a light quark (uds) jet, 
as a function of the efficiency to correctly identify light quark jets. The curves are obtained on 
simulated QCD events with p̂T between 30 and 50 GeV and using jets with a pT above 30 GeV. 
The absolute performance in this figure serves as an illustration since the light quark jet 
identification efficiency depends on the pT and η distribution of the jets, the event topology, the 
flavour composition of the sample, and the generator used. All curves are obtained using Pythia8. 
Jets that originate from a gluon splitting to cc or bb quarks are not considered gluon jets.
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DPS-2017-027DPS-2017-027

Comparisons of DNNs
• We filter on generator level only light quarks 

and gluons that did NOT split to heavy flavour.
• All DNN used in binary mode

→ Generic DeepFlavour and custom q/g gave very similar 
results!

→ Data is multi-class, without heavy flavour removel
DeepJet was clearly best
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Next steps
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What is the target (loss)?

We train&aim at MC with labels 

Simulation: huge well labeled dataset at all phase-spaces
→ Ideal to train big DNN!
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What is the target (loss)?

We train in simulation

But data might be 
somewhere else

• Need to move also the target!
• Ideally maintain advantages of well labeled MC! 



Toy example

★ ★
● ●

• Data (worse) half the horizontal resolution around circle
• We might know start/circle ratio in data, but not have 

individual labels 
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New target

• Classify the huge well labeled 
MC optimally

• Make it impossible to tell from 
the output that is was MC (given 
you know start/circle ration in 
data)

New proposal: Hybrid loss, add term to loss that 
enhances independence of output from data and mc

MS
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Enhance Independence

Loss = Loss + l∑ "
#
∑ (%&'

%('
− 1),� 	/0#

/0"
102
103

• i is the index of the classes (data or MC) or e.g. bin of a 
histogram with n bins, a stands for all 

• 𝑀/ is the moment j of the output

→ Approximate independence test: any slice of a 2D 
histogram looks the same, but better use moments of 
output for technical reasons (efficient in loss calculation)

MS

New proposal: Use analytical stringent necessary 
condition for independence (e.g. moments of different 
bins) as penalty term in loss to enhance independence.
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Toy Results
• Train with mc (mc)
• Retrain with mc adding the 
moment loss to enhance data 
and MC output agreement 
(mc+fdata). Assume to know 
star/circle ratio in data!

• Train using data labels (data)

MS

Hybrid Loss achieved same performance as individually 
labeled data 

Proposal: Pre-train with MC (high stats, good labels) and 
fine-tune with data (lower stats, average or approximate 
labels)
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Summary
DeepCSV: 
• Deep learned multi-label flavour tagger, which is the 

recommended CMS tagger 2017
• Used with success in 2016 analysis in data

DeepJet:
• Developed new generic DNN structure for jets reconstruction, 

that incorporates extensive information from all jet 
constituents

• Performs best CMS simulation in all categories
• Working other cone sizes and regression

Data/MC:
• Working on new methods to incorporate data/mc 

differences in overall strategy


