

Yale

MACHINE LEARNING FOR B-JET TAGGING

MICHELA PAGANINI
ON BEHALF OF THE ATLAS COLLABORATION

OPTIMIZATION AND PERFORMANCE STUDIES FOR B-TAGGING IN ATLAS

IN THIS TALK

ATLAS-PHYS-PUB-2017-003

ATLAS-PHYS-PUB-2017-013

- Description of flavor tagging ecosystem for the 2017-18 run
- Focus on Deep Learning-powered improvements

FLAVOR TAGGING REVIEW

GOAL OF FLAVOR TAGGING

Separate jets that contain *b*-hadrons from jets initiated by lighter quark flavors

 Average b-hadron lifetime
 → distance travelled before decaying (~mm) ideal for detection in ATLAS

FLAVOR TAGGING REVIEW

B-HADRON DECAY

b-hadron contains b quark,which decays through a cascade

Limited by detector resolution, pileup, tracking inefficiency, material interactions, and long-lived decays for light jets

B-HADRON DECAY

b-hadron contains b quark, which decays through a cascade
 U C t top
 O S b bottom

Limited by detector resolution, pileup, tracking inefficiency, material interactions, and long-lived decays for light jets

B-HADRON DECAY

Limited by detector resolution, pileup, tracking inefficiency, material interactions, and long-lived decays for light jets

strange

B-HADRON DECAY

down

b-hadron contains b quark, which decays through a cascade light hadron c-hadron charm top up b-hadron

Limited by detector resolution, pileup, tracking inefficiency, material interactions, and long-lived decays for light jets

bottom

FLAVOR TAGGING REVIEW

- Truth labels:
 - ▶ b: if b-hadron with $p_T > 5$ GeV within $\Delta R = 0.3$ of jet axis
 - c: if not b & c-hadron with $p_T > 5$ GeV within $\Delta R = 0.3$ of jet axis
 - τ : if not b or c & τ -lepton with $p_T > 5$ GeV within $\Delta R = 0.3$ of jet axis
 - light: otherwise
- ▶ Important for ATLAS Physics program ($H\rightarrow bb$, SUSY, ...)

VERTEX FINDING ALGORITHMS

VERTEX FINDING ALGORITHMS

VERTEX FINDING ALGORITHMS

reconstructs a single displaced vertex

VERTEX FINDING ALGORITHMS

reconstructs a single displaced vertex

performs a
 topological decay
 reconstruction along
 the b-hadron line of
 flight

IMPACT PARAMETER TAGGERS

IMPACT PARAMETER TAGGERS

IMPACT PARAMETER TAGGERS

IP3D

RNNIP

- binned 2D likelihood per grade category using each track's transverse ($S_{d_0} = d_0/\sigma_{d_0}$) and longitudinal ($S_{z_0} = z_0/\sigma_{z_0}$) impact parameter significances
 - light: significance consistent with 0

track

 d_0

IMPACT PARAMETER TAGGERS

IP3D

RNNIP

- binned 2D likelihood per grade category using each track's transverse ($S_{d_0}=d_0/\sigma_{d_0}$) and longitudinal ($S_{z_0}=z_0/\sigma_{z_0}$) impact parameter significances
 - light: significance consistent with 0

IP3D LLR =
$$\sum_{i=1}^{N} \log \frac{p_{b_i}}{p_{u_i}}$$

sum over tracks in a jet

track

 d_0

IMPACT PARAMETER TAGGERS

- Based on Recurrent Neural Networks
- Exploits correlation among tracks, neglected by IP3D

b-jets

light jets

RECURRENT NEURAL NETWORKS

 Neural network unit to learn sequence-based dependencies for arbitrary-length input sequences

from Peter Roelants

- Cell holds internal state vector
- Identically applied to every entry in sequence
- Recurrent loop feeds back into cell

LSTM

Long-Short Term Memory units

IMPACT PARAMETER TAGGERS

Represent jets as a sequence of tracks ordered by |S_{d0}|

IMPACT PARAMETER TAGGERS

Combine output in discriminant:

$$D_{\text{RNN}}(b) = \ln \frac{p_b}{f_c p_c + f_\tau p_\tau + (1 - f_c - f_\tau) p_{\text{light}}}$$

Can be tuned after training

- IP3D and RNNIP tagged jets are partly complementary.
 - → increased performance when both are inputs to subsequent tagger

IMPACT PARAMETER TAGGERS

Combine output in discriminant:

$$D_{\text{RNN}}(b) = \ln \frac{p_b}{f_c p_c + f_\tau p_\tau + (1 - f_c - f_\tau) p_{\text{light}}}$$

Can be tuned after training

- ▶ IP3D and RNNIP tagged jets are partly complementary
 - → increased performance when both are inputs to subsequent tagger

SOFT MUON TAGGER

SOFT MUON TAGGER

SOFT MUON TAGGER

- Reconstructs muons from semi-leptonic decays
- Limited by the semi-leptonic branching ratio BR(b → μ v X) + BR(b → c → μ v X) ≈ 21%
- Complementary to other low level taggers that are based on lifetime information

O 0.18 GeV Entries / 0.05 - c jets 0.16 0.14 Entries / 2 0.5 **ATLAS** Simulation Preliminary 0.4 0.12 0.3 $\sqrt{s} = 13 \text{ TeV}, \text{ } \text{t}$ √s = 13 TeV, tt $\sqrt{s} = 13 \text{ TeV}, \text{ tt}$ 0.08 0.2 0.06 0.04 0.1 0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 10 12 14 16 p_Trel [GeV] ΔR 0.35 0.25 0.25 0.08 0 0.12 Entries / C — c jets 0.06 Entries 0.06 - - Light-flavour iet - - Light-flavour - - Light-flavou ATLAS 0.05 0.04 $\sqrt{s} = 13 \text{ TeV. } t\bar{t}$ 0.06 $\sqrt{s} = 13 \text{ TeV}, \text{ } \text{t}$ $\sqrt{s} = 13 \text{ TeV. } t\bar{t}$ 0.15 0.03 0.04 0.1 0.02 0.02 0.05 0.01 0-2-1.5-1-0.5 0 0.5 1 1.5 2 2.5 3

Defined new variables to separate muons from b-decays, and bkg muons from decays in flight of pions and kaons:

$$S = q \sum_{i} \frac{\Delta \phi_{\text{scat}}^{i}}{\sigma_{\Delta \phi_{\text{scat}}^{i}}}$$

$$\mathcal{M} = \frac{p_{\text{ID}} - p_{\text{MS}}^{\text{extr}}}{\sigma_{E_{\text{loss}}}}$$

$$\mathcal{R} = \frac{(q/p)_{\text{ID}}}{(q/p)_{\text{MS}}}$$

IP3D RNNIP SMT SV1 JET FITTER

GRADIENT BOOSTED DECISION TREE

- ▶ Trained with ROOT TMVA
- b vs non-b

Default non-b background: 7% charm and 93% light

Various versions:

- ▶ For *c*-tagging:
 - MV2c100 trained on 100% c background
 - MV2cl100 for c vs light, no b

DL1

DEEP NEURAL NETWORK

- Trained with Keras (Theano backend)
- ▶ In ATLAS codebase using <u>LWTNN</u>
- Multi-class (b, c, light)
- Architecture: fully connected + maxout + ReLU + batch norm layers

ADVANTAGES

- flexibility in future R&D
- easy to train
- min standalone code
- GPU enabled
- modular

- easy to extend to new input variables
- can be trained adversarially
- can be trained end-to-end with RNNIP

HYBRID SAMPLE

Join ttbar and Z' samples ~250 GeV to extend kinematic range

HYBRID SAMPLE

• Improves MV2 performance at high p_T with no performance degradation for ttbar

MV2 VARIANTS EVALUATION - B VS LIGHT

MV2 VARIANTS EVALUATION - B VS C

c-EFFICIENCY ISO-CURVES

 When multi-label tagging is enabled, can look at tagging rejections trade-off at constant c-efficiency

MV2c100 & MV2cl100

MODELLING

IMPROVED DATA-MC AGREEMENT

- Due to improvement in tracking simulation
- Minor local discrepancies

WHAT TO EXPECT

- Better data Monte Carlo agreement
- More performant flavor tagging, due to:
 - availability of new hybrid training sample to extend p_T range
 - improvements and innovations in low level taggers, such as RNNIP* and SMT
 - improvements and innovations in high level taggers, such as DL1

IMPACT PARAMETER DEFINITION

Sign:

LSTM & GRU

- Mitigate issues with exploding and vanishing gradients
- Improve knowledge persistence of long-term dependencies
- Internal gating mechanisms to read, write, reset memory
- Classical RNN:

$$\begin{cases} \boldsymbol{s}_t = \boldsymbol{W}_{\text{rec}} \phi(\boldsymbol{s}_{t-1}) + \boldsymbol{W}_x \boldsymbol{x}_t \\ \boldsymbol{y}_t = \boldsymbol{W}_y \boldsymbol{s}_t \end{cases}$$

Train by optimizing objective function:

$$\frac{\partial \mathcal{L}_t}{\partial \boldsymbol{W}_{\mathrm{rec}}} = \sum_{k=1}^t \frac{\partial \mathcal{L}_t}{\partial \boldsymbol{y}_t} \frac{\partial \boldsymbol{y}_t}{\partial \boldsymbol{s}_t} \frac{\partial \boldsymbol{s}_t}{\partial \boldsymbol{s}_k} \frac{\partial \boldsymbol{s}_k}{\partial \boldsymbol{W}_{\mathrm{rec}}}$$

$$egin{aligned} rac{\partial \mathcal{L}_t}{\partial oldsymbol{W}_{ ext{rec}}} &= \sum_{k=1}^t rac{\partial \mathcal{L}_t}{\partial oldsymbol{y}_t} rac{\partial oldsymbol{y}_t}{\partial oldsymbol{s}_t} rac{\partial oldsymbol{s}_t}{\partial oldsymbol{w}_{ ext{rec}}} rac{\partial oldsymbol{s}_k}{\partial oldsymbol{W}_{ ext{rec}}} \end{aligned}$$
 product of Jacobians $\prod_{i=k+1}^t rac{\partial oldsymbol{s}_i}{\partial oldsymbol{s}_{i-1}} = \prod_{i=k+1}^t oldsymbol{W}_{ ext{rec}}^T ext{diag}[\phi'(oldsymbol{s}_{i-1})]$

$$\frac{\partial \mathcal{L}_t}{\partial \boldsymbol{W}_{\mathrm{rec}}} = \sum_{k=1}^t \frac{\partial \mathcal{L}_t}{\partial \boldsymbol{y}_t} \frac{\partial \boldsymbol{y}_t}{\partial \boldsymbol{s}_t} \frac{\partial \boldsymbol{s}_t}{\partial \boldsymbol{s}_k} \frac{\partial \boldsymbol{s}_k}{\partial \boldsymbol{W}_{\mathrm{rec}}}$$

$$\text{product of Jacobians} \qquad \prod_{i=k+1}^t \frac{\partial \boldsymbol{s}_i}{\partial \boldsymbol{s}_{i-1}} = \prod_{i=k+1}^t \boldsymbol{W}_{\mathrm{rec}}^T \mathrm{diag}[\phi'(\boldsymbol{s}_{i-1})]$$

$$\text{norm is bounded above} \qquad \left| \frac{\partial \boldsymbol{s}_i}{\partial \boldsymbol{s}_{i-1}} \right| \leq ||\boldsymbol{W}_{\mathrm{rec}}^T|| \, ||\mathrm{diag}[\phi'(\boldsymbol{s}_{i-1})]|| \leq \gamma_w \gamma_\phi$$

$$rac{\partial \mathcal{L}_t}{\partial oldsymbol{W}_{ ext{rec}}} = \sum_{k=1}^t rac{\partial \mathcal{L}_t}{\partial oldsymbol{y}_t} rac{\partial oldsymbol{y}_t}{\partial oldsymbol{s}_t} rac{\partial oldsymbol{s}_t}{\partial oldsymbol{s}_k} rac{\partial oldsymbol{s}_k}{\partial oldsymbol{W}_{ ext{rec}}}$$

product of Jacobians
$$\prod_{i=k+1}^t \frac{\partial s_i}{\partial s_{i-1}} = \prod_{i=k+1}^t \boldsymbol{W}_{\mathrm{rec}}^T \mathrm{diag}[\phi'(s_{i-1})]$$
 norm is bounded above
$$\left|\left|\frac{\partial s_i}{\partial s_{i-1}}\right|\right| \leq ||\boldsymbol{W}_{\mathrm{rec}}^T|| \left||\mathrm{diag}[\phi'(s_{i-1})]|\right| \leq \gamma_w \gamma_\phi$$

$$\left| \frac{\partial \boldsymbol{s}_i}{\partial \boldsymbol{s}_{i-1}} \right| \le ||\boldsymbol{W}_{\mathrm{rec}}^T|| \left| |\operatorname{diag}[\phi'(\boldsymbol{s}_{i-1})]| \right| \le \gamma_w \gamma_\phi$$

$$\left|\left|rac{\partial s_t}{\partial s_k}
ight|
ight| \leq (\gamma_w\gamma_\phi)^{t-k}
ight| ext{for long sequences: - goes to 0 if arg < 1 - diverges for arg > 1}$$

