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OPTIMIZATION AND PERFORMANCE STUDIES FOR B-TAGGING IN ATLAS

IN THIS TALK

▸ Description of flavor tagging ecosystem for the 
2017-18 run 

▸ Focus on Deep Learning-powered improvements

IP3D RNNIP SV1 JET FITTERSMT

MV2 DL1 

ATLAS-PHYS-PUB-2017-003 ATLAS-PHYS-PUB-2017-013

https://cds.cern.ch/record/2255226?ln=en
https://cds.cern.ch/record/2273281?ln=en


Separate jets that 
contain b-hadrons 
from jets initiated 
by lighter quark 
flavors

FLAVOR TAGGING REVIEW

▸ Average b-hadron lifetime 
→ distance travelled before 
decaying (~mm) ideal for 
detection in ATLAS

GOAL OF FLAVOR TAGGING
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FLAVOR TAGGING REVIEW

▸ Truth labels: 
▸ b: if b-hadron with pT > 5 GeV within ∆R=0.3 of jet axis 

▸ c: if not b & c-hadron with pT > 5 GeV within ∆R=0.3 of jet axis 

▸ τ: if not b or c & τ-lepton with pT > 5 GeV within ∆R=0.3 of jet axis 

▸ light: otherwise 

▸ Important for ATLAS Physics program (H→bb, SUSY, …)

Diagrams from Quantum Diaries
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VERTEX FINDING ALGORITHMS

SV1

JET FITTER

IP3D IPRNN SMT

MV2 DL1 
SVPV

PV

SV

TV

▸ reconstructs a single 
displaced vertex 

▸ performs a 
topological decay 
reconstruction along 
the b-hadron line of 
flight
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▸ measures compatibility of track 
with primary vertex hypothesis 

▸ binned 2D likelihood per grade 
category using each track’s 
transverse (Sd0=d0/σd0) and 
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▸ measures compatibility of track 
with primary vertex hypothesis 

▸ binned 2D likelihood per grade 
category using each track’s 
transverse (Sd0=d0/σd0) and 
longitudinal (Sz0=z0/σz0) impact 
parameter significances 

▸ light: significance consistent with 0

sum over tracks 
in a jet
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LOW LEVEL TAGGERS

IMPACT PARAMETER TAGGERS

▸ Based on Recurrent Neural Networks 

▸ Exploits correlation among tracks, neglected 
by IP3D

b-jets light jets

IP3D RNNIP



▸ Neural network unit to learn sequence-based 
dependencies for arbitrary-length input sequences 
 
 
 
 

▸ Cell holds internal state vector 

▸ Identically applied to every entry in sequence 

▸ Recurrent loop feeds back into cell

RNN PRIMER

RECURRENT NEURAL NETWORKS

from Peter Roelants



RNN PRIMER

LSTM

10

▸ Long-Short Term Memory units

σ, Wf

σ, Wi

σ, Wo

tanh, Wp

ct-1 ct

htht-1

xt

(ht-1, xt)
tanh

Forget Gate: how much of ct-1 should be retained?

Input Gate: how much should the current step matter?

Output Gate: how much should 
the overall output be weighted?



LOW LEVEL TAGGERS

IMPACT PARAMETER TAGGERS

▸ Represent jets as a sequence of tracks ordered by |Sd0| 

▸ Each track is a vector of variables 

▸ Multi-class tagger

RNNIP



▸ Combine output in discriminant: 

▸ Can be tuned after training

LOW LEVEL TAGGERS

RNNIP

▸ IP3D and RNNIP tagged jets are partly complementary 
→ increased performance when both are inputs to 
subsequent tagger 
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LOW LEVEL TAGGERS

SMT

IP3D RNNIP SV1 JET FITTER

MV2 DL1 

SOFT MUON TAGGER
▸ Reconstructs muons from semi-leptonic decays 

▸ Limited by the semi-leptonic branching ratio  
BR(b → µ ν X) + BR(b → c → µ ν X) ≈ 21% 

▸ Complementary to other low level taggers that are 
based on lifetime information

Defined new variables to 
separate muons from b-decays, 
and bkg muons from decays in 
flight of pions and kaons:
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IP3D RNNIP SV1 JET FITTERSMT

MV2 DL1 



HIGH LEVEL TAGGERS

GRADIENT BOOSTED DECISION TREE

▸ Trained with ROOT TMVA
▸ b vs non-b 

▸ Various versions: 
 
 
 

▸ For c-tagging: 
▸ MV2c100 trained on 100% c background 
▸ MV2cl100 for c vs light, no b

MV2 

IP3D SV1 JET FITTER

MV2 

SMTIP3D SV1 JET FITTER

MV2Mu 

SMTIP3D RNNIP SV1 JET FITTER

MV2MuRnn 

Default non-b background: 7% charm and 93% light



HIGH LEVEL TAGGERS

DEEP NEURAL NETWORK
▸ Trained with Keras (Theano backend) 
▸ In ATLAS codebase using LWTNN
▸ Multi-class (b, c, light) 
▸ Architecture: fully connected + maxout + ReLU + batch 

norm layers

DL1 

ADVANTAGES
▸ flexibility in future R&D 
▸ easy to train 
▸ min standalone code 
▸ GPU enabled 
▸ modular 

▸ easy to extend to new 
input variables 

▸ can be trained adversarially  
▸ can be trained end-to-end 

with RNNIP

https://github.com/lwtnn/lwtnn


TRAINING IMPROVEMENTS

HYBRID SAMPLE
▸ Join ttbar and Z’ samples ~250 GeV 

to extend kinematic range



TRAINING IMPROVEMENTS

HYBRID SAMPLE
▸ Improves MV2 performance at high pT with 

no performance degradation for ttbar
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Performance 
in bins of 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PERFORMANCE

c-EFFICIENCY ISO-CURVES

▸ When multi-label tagging is enabled, can look at 
tagging rejections trade-off at constant c-efficiency

MV2c100 & MV2cl100

DL1



MODELLING

IMPROVED DATA-MC AGREEMENT

▸ Due to improvement in tracking simulation 
▸ Minor local discrepancies



SUMMARY

WHAT TO EXPECT

▸ Better data - Monte Carlo agreement 

▸ More performant flavor tagging, due to: 

▸ availability of new hybrid training sample to 
extend pT range 

▸ improvements and innovations in low level 
taggers, such as RNNIP■ and SMT 

▸ improvements and innovations in high level 
taggers, such as DL1■ 

 ■ = deep learning taggers



BACKUP



LOW LEVEL TAGGERS

IMPACT PARAMETER DEFINITION
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▸ Sign:
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Negative Positive

track crosses jet axis 
behind the primary vertex

track crosses jet axis in 
front of the primary vertex



RNN PRIMER

LSTM & GRU

▸ Mitigate issues with exploding and vanishing gradients 

▸ Improve knowledge persistence of long-term dependencies 

▸ Internal gating mechanisms to read, write, reset memory 

▸ Classical RNN: 

▸ Train by optimizing objective function:
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RNN PRIMER

EXPLODING & VANISHING GRADIENTS

Slide inspired by N. de Freitas

product of Jacobians

norm is bounded above

for long sequences: 
- goes to 0 if arg < 1 
- diverges for arg >1


