Striped Data Server for Scalable Parallel Data Analysis

Jin Chang (Caltech), Oliver Gutsche(FNAL), Igor Mandrichenko (FNAL), James Pivarski (Princeton University)

Goal: Reduce Time to Insight

Reduce analysis turn-around time
Programmatically, traditional analysis is iterative process, repeating:

- Skimming (drop not interesting events, disk-to-disk)
- Slimming (drop unneeded attributes, disk-to-disk)
- Filtering (selectively read events into the memory)
- Pruning (selectively read attributes into the memory)

Provide access to the needed data and only to the needed data

- Direct, scalable, efficient

Eliminate the need to skim or slim data as a disk-to-disk operation

Innovation: Striped sata representation - move from file-based to database-based analysis paradigm

- Variation of columnar representation
- Columns are broken into stripes at the event group
- 1K-10K events boundaries
- Data Stripe - one column of data for one event group
- unit of representation efficiently stored in a key/value database

Stripe is a numpy data array, immediately consumable by numpy

Striped analysis:
Move as much calculations as possible from the event loop to numpy vector operations over stripes

- Vector operations are much more efficient
- Can leverage power of GPU

- Can be used for variety of non-HEP data

Implementation: cloud-friendly client/worker/database architecture

Striped Data Server

- Distributed, scalable, redundant no-SQL key/value storage
- Web service with simple REST interface, web cache

Computing Component/Workers

- Worker is a single-threaded stateless process with its private data cache
- Cloud-ready: can be deployed elastically, using Docker containers

User code - Python, Jupyter notebook compatible
$\sim 1 \mathrm{M}$ events/second performance on 30 core demo 2-server cluster, CMS dark matter search dataset

- 1 worker per core, 13 node database no-SQL DB cluster

