

BDTs in the Level 1 Muon Endcap
Trigger at CMS

By Andrew Carnes
Darin Acosta, Andrew Brinkerhoff, Elena Busch, Ivan Furic, Sergei
Gleyzer, Khristian Kotov, Jia Fu Low, Alexander Madorsky, , Jamal
Rorie , Bobby Scurlock, Wei Shi

1

Intro 2

● At the Large Hadron Collider
● We want to save as much data as possible
● But… there’s way too much

● So throw out uninteresting events (proton collisions)
● Keep interesting events

● The Trigger decides which to throw out and which to keep
● Needs to operate quickly!

● Implemented machine learning to classify interesting vs
uninteresting Muons at one of the detectors called CMS

● Implemented it in hardware: Field Programmable Gate Arrays (FPGAs)
● First implementation of Machine Learning in a Level 1 Trigger at the LHC

Outline 3

● Very Brief Context of the Project
● The Large Hadron Collider
● The Compact Muon Solenoid (CMS) Detector
● The Trigger System at CMS

● Implementation of BDTs in the Endcap Muon Trackfinder
(EMTF)

● Machine Learning implemented in Hardware (FPGAs)
● Runs online in real time

● Results
● Substantial Improvements!

The Large Hadron Collider
and The Compact Muon Solenoid

Detector

4

5

13 TeV proton-proton Collisions
every 25 ns

6Compact Muon Solenoid

Detect Particles From the Collisions
Measure their Kinematics

The Level 1 Trigger
and the EMTF

7

CMS Trigger Overview 8

● Too much data to save!
● The triggers filter events until a manageable

amount of data can be stored!
● 40 Million/sec IN
● 1000/sec OUT

Level 1 (L1) Trigger
Hardware Operating Online

High Level Trigger (HLT)
Software Operating Online

Collision Events

Events Passing L1

Events to Save
Passed L1 and HLT

~40 TB/s
~ 40e6
events/s

~100 GB/s
~ 100e3
events/s

~1 GB/s
1e3
events/sAn Event at CMS

Event: bunches of protons
collide

L1 Trigger and the EMTF 9

● Level 1 (L1) Trigger is responsible for selecting
100k interesting events out of 40 Million events
every second at the LHC

● Only have 3.0 μs for the entire process
● Endcap Muon Track Finder (EMTF)

● Part of the L1 Trigger System dedicated to Muons
● Needs to operate FAST (~ 500 ns)
● No tracker info available, only muon chambers

10Muons Leave Tracks

● Interesting muons have a large Transverse Momentum (pT)
● pT is assigned based upon the curvature in the magnetic field

● Low momentum particles bend more in Φ
● High momentum particles bend less in Φ

● EMTF needs to process hits and assign a momentum in ~500 ns

*the picture shows the barrel not the endcap, but gets the point across

11

High pT

#

few muons!

many muons!

Low pT X GeV

Rate(X) = # > X GeV
Efficiency(X) = # True > X GeV

EMTF Objectives
● Metrics of Success

● Rate(X) – The number of muons predicted
to be greater than X GeV

● True AND False Positives
● Efficiency(X) – The number of muons

predicted to be greater than X GeV that
should have been

● AKA True Positives

● EMTF Objective
● Minimize Rate while Maximizing Efficiency
● In simpler terms

● pass as little data > X GeV
● but keep those actually > X GeV

● Typical “Interesting” Event has pT > 25
GeV

● 1000 5 GeV muons for every 25 GeV
Muon

● Critical to reject as many low-pT as
possible

● Predicting low pT above threshold
increases rate substantially

12EMTF pT Assignment
Predict the pT well and the trigger will operate well
We have a regression problem with many features*

● 4 detection stations with Φ, θ info for each

Complicated Dependencies
● Non-uniform magnetic field in the endcap
● The muons may scatter between stations
● Muons shower charged particles from the material at high pT
● low pT muons may spiral completely before getting to the next station

● looks like a straight line
● actually went in a full circle

Many variables with complicated dependencies
● Machine Learning should perform well
● But evaluation is slow
● And the logic to implement the algorithm would take up lots of logic space from the

FPGA...
*many, but not as many as say a picture

Φ θ

side view front view

Detector Station

1 2 3 4

muon track

Some important features
ΔΦ

12
ΔΦ

23
ΔΦ

34

 θ
track

Δθ
12

Δθ
12

Δθ
12

Getting Machine Learning
into Hardware

13

14How to Have your cake
and Eat it Too

● Want machine learning (ML) for accurate pT Assignment!
● Want it to operate in hardware quickly!

● Take a standard ML algorithm and estimate if it is fast enough
● Boosted Decision Tree with standard settings* would take about 2500

ns
● only have 500 ns total for ALL EMTF calculations

● Need most of the 500 ns to process measurements from wires and
strips, build tracks, and then evaluate θ, Φ values

● Standard evaluation of ML algorithm is not feasible on these time
scales!

● Moreover we would need to store all of the ~15,000 logical (<,>,+)
operations for the BDT onto the FPGA… takes up too much logic

● and that’s in addition to the logic already present

● 2500 operations to assign the pT for a single track! No thanks!
● Reduce the 2500 operations into 1 operation

* 500 Trees, depTh of 4, estimated for ~ 1 GHz processor

15

Create a Look Up Table
● Turn evaluation from a Machine Learning (ML) Model into a single operation
● Trade time for memory

● Create a Look Up Table (LUT)!
● Create offline, use online
● Discretize features and fit into 30 bits

● e.g. var1 = 10 bits, var2 = 5 bits, var3 = 5 bits, var4 = 5 bits, var5 = 5 bits
● input = [var1 | var2 | var3 | var4 | var5] = 30 bits

● Map each input to the ML model output and save the map
● 2^30 possibilities w/ 9 bit outputs = 1.2 GB LUT

● Versatile method that works for any fit algorithm
● However… Lose resolution on the features
● Hard to fit lots of features into 30 bits

Look Up Table

00000000 = pT(00000000)
00000001 = pT(00000001)
...
...

pT in 16 bits

Write LUT using ML Model

00000000 → → pT(00000000)
00000001 → → pT(00000001)
…
...

A
ll P

o
s sib

ilitie s

ML
Model

features in
30 bits

16

Summarizing the Logic

FPGA

Figure out

● Φ
● θ
● other info

for each station in
the track from raw
measurements

Discretize
Features

Access LUT

00000000 = pT(00000000)
00000001 = pT(00000001)
...
...

Send
track info

● Φ
● θ
● pT
● ...

logic flow this way

Results and Conclusions

17

Results in Practice
18

● At the EMTF
● We trained a forest of Boosted Decision Trees (BDTs)
● Then discretized features fitting them into 30 bits
● Converted 2^30 possible features into a 2 GB LUT
● Put the LUT into the FPGA
● Implemented this design in 2016/2017 data taking

● Improved the EMTF trigger by a factor of 2!
● 2x rate reduction (for pT > 22 GeV) with small loss of efficiency
● Comparing 2016/2017 BDT based EMTF to the 2015 EMTF trigger

N
ew

 R
at

e
/

O
ld

 R
at

e

½ the rate

Lessons Learned 19

● Main Problem
● 1000 5 GeV muons for every 25 GeV muons
● Really need to focus on low momentum events

● If low pT events are predicted greater than their
actual pT the rate increases substantially!

● Use a Transformation + Loss Function to focus on low pT
events

● Targeting 1/pT makes differences in low pT large, count more in loss
● Loss = |1/pT – 1/pT_true|2
● Focus on low pT more → lower rate (good) , lower efficiency (bad)
● Focus on low pT less → higher rate (bad), higher efficiency (good)

● Create variables to identify outliers
● Problem: strange dΦ bend between two chambers due to scattering or

showering throws off pT assignment
● Add Feature: average dΦ, |dΦ| calculated without the outlier
● Add Feature: variable identifying the outlier station

● Interesting problem since it is somewhere between regression
and classification

● Above or below pT threshold? For many thresholds

Change exponent to penalize differences more/less

Conclusions
20

● Implemented Boosted Decision Trees in a Field Programmable Gate Array
● Created a Look Up Table (LUT)

● Make offline, use online
● Map from 2^30 possible discretized feature values → 9 bit pT

● LUT turns pT assignment into an O(1) operation running in << 500 ns
● Accurate pT assignment improved our trigger by a factor of 2

● LUT method is versatile and possible for any Machine Learning method
● Great for implementing a ML method where fast decisions are important (like a trigger)
● Might be difficult to fit all important features into ~30 bits total

● Some Future Ideas
● Train on Data rather than MC using HLT tracker pT as the “truth”

● Very high statistics for training and testing very quickly
● The pT distribution and hence the rate of muons differs between Data and MC

● Craft a loss function that directly models our metrics: Rate and Efficiency

The End

21

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

