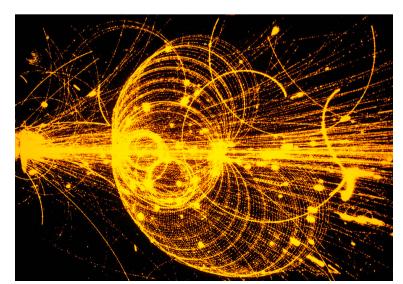
BDTs in the Level 1 Muon Endcap Trigger at CMS

By Andrew Carnes Darin Acosta, Andrew Brinkerhoff, Elena Busch, Ivan Furic, Sergei Gleyzer, Khristian Kotov, Jia Fu Low, Alexander Madorsky, , Jamal Rorie , Bobby Scurlock, Wei Shi

Intro

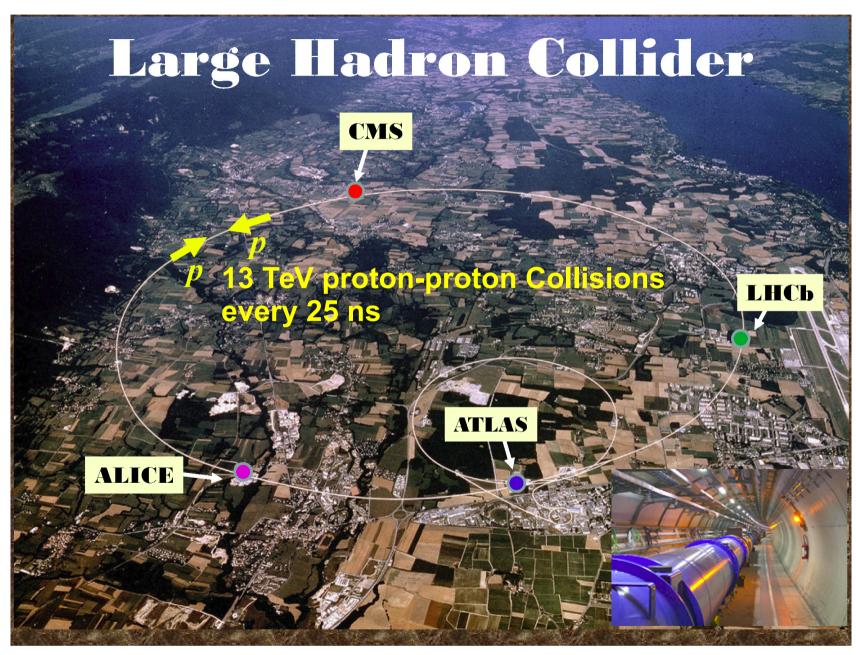
- At the Large Hadron Collider
 - We want to save as much data as possible
 - But... there's way too much
 - So throw out uninteresting events (proton collisions)
 - Keep interesting events
 - The Trigger decides which to throw out and which to keep
 - Needs to operate quickly!
- Implemented machine learning to classify interesting vs uninteresting Muons at one of the detectors called CMS
 - Implemented it in hardware: Field Programmable Gate Arrays (FPGAs)
 - First implementation of Machine Learning in a Level 1 Trigger at the LHC



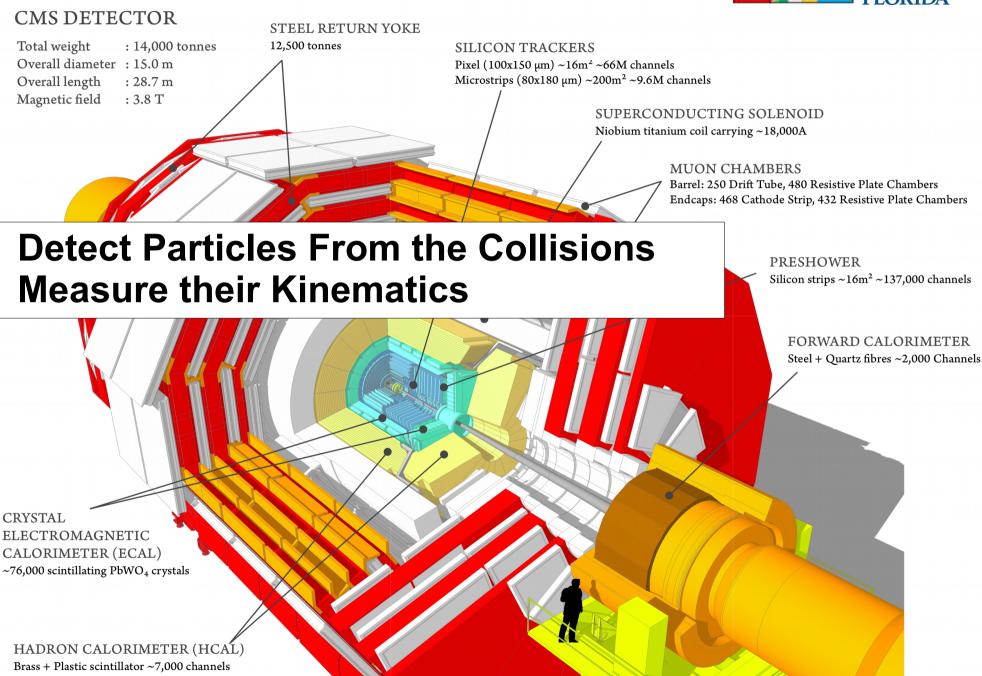
Outline

- Very Brief Context of the Project
 - The Large Hadron Collider
 - The Compact Muon Solenoid (CMS) Detector
 - The Trigger System at CMS
- Implementation of BDTs in the Endcap Muon Trackfinder (EMTF)
 - Machine Learning implemented in Hardware (FPGAs)
 - Runs online in real time
- Results
 - Substantial Improvements!

The Large Hadron Collider and The Compact Muon Solenoid Detector



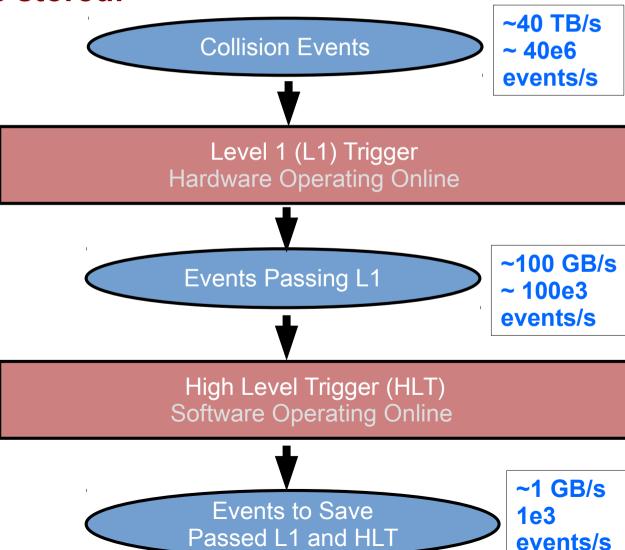
Compact Muon Solenoid



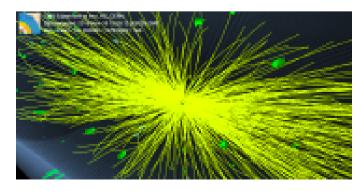
The Level 1 Trigger and the EMTF

CMS Trigger Overview

- Too much data to save!
- The triggers filter events until a manageable amount of data can be stored!
 - 40 Million/sec IN
 - 1000/sec OUT



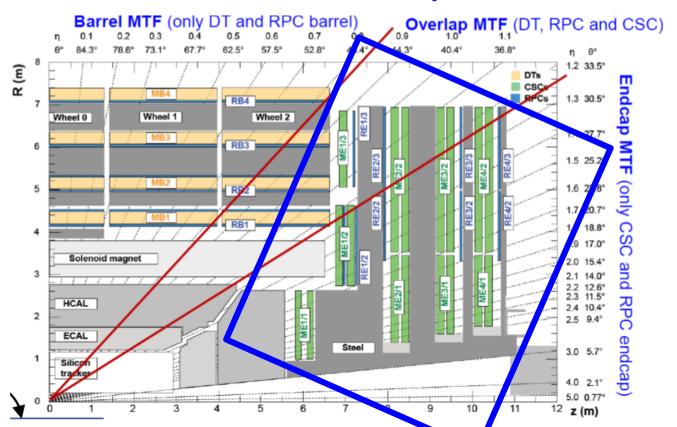
Event: bunches of protons collide

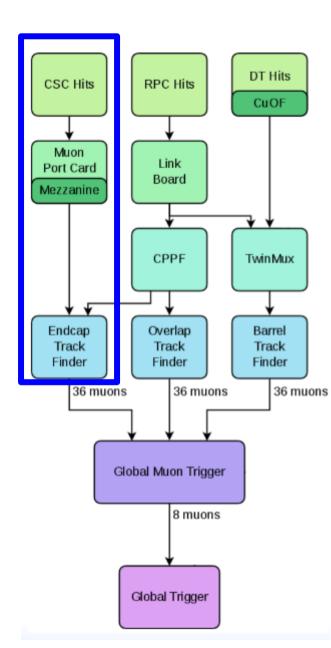


An Event at CMS

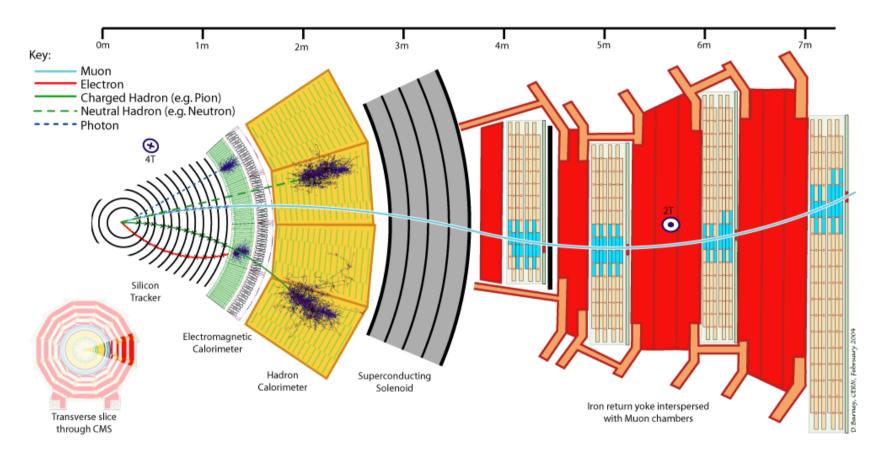
L1 Trigger and the EMTF

- Level 1 (L1) Trigger is responsible for selecting 100k interesting events out of 40 Million events every second at the LHC
- Only have 3.0 µs for the entire process
- Endcap Muon Track Finder (EMTF)
 - Part of the L1 Trigger System dedicated to Muons
 - Needs to operate FAST (~ 500 ns)
 - No tracker info available, only muon chambers





Muons Leave Tracks



- Interesting muons have a large Transverse Momentum (pT)
- pT is assigned based upon the curvature in the magnetic field
 - Low momentum particles bend more in Φ
 - High momentum particles bend less in Φ
- EMTF needs to process hits and assign a momentum in ~500 ns

EMTF Objectives

Metrics of Success

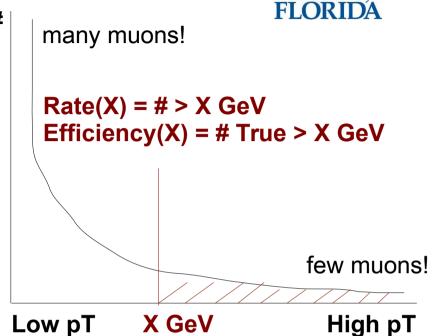
- Rate(X) The number of muons predicted to be greater than X GeV
 - True AND False Positives
- Efficiency(X) The number of muons predicted to be greater than X GeV that should have been
 - AKA True Positives

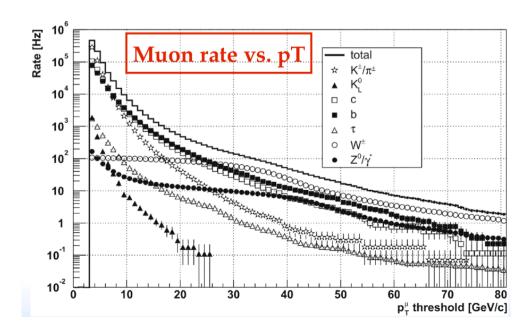
EMTF Objective

- Minimize Rate while Maximizing Efficiency
- In simpler terms
 - pass as little data > X GeV
 - but keep those actually > X GeV

Typical "Interesting" Event has pT > 25 GeV

- 1000 5 GeV muons for every 25 GeV Muon
- Critical to reject as many low-pT as possible
- Predicting low pT above threshold increases rate substantially



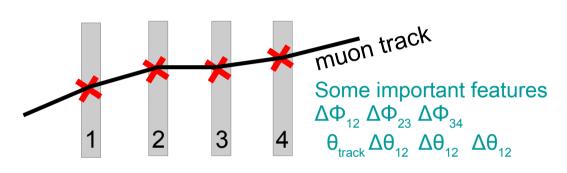


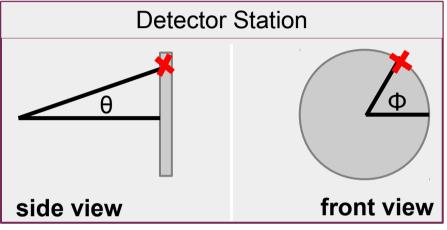
EMTF pT Assignment

Predict the pT well and the trigger will operate well

We have a regression problem with many features*

4 detection stations with Φ, θ info for each





Complicated Dependencies

- Non-uniform magnetic field in the endcap
- The muons may scatter between stations
- Muons shower charged particles from the material at high pT
- low pT muons may spiral completely before getting to the next station
 - looks like a straight line
 - actually went in a full circle

Many variables with complicated dependencies

- Machine Learning should perform well
- · But evaluation is slow
- And the logic to implement the algorithm would take up lots of logic space from the FPGA...

Getting Machine Learning into Hardware

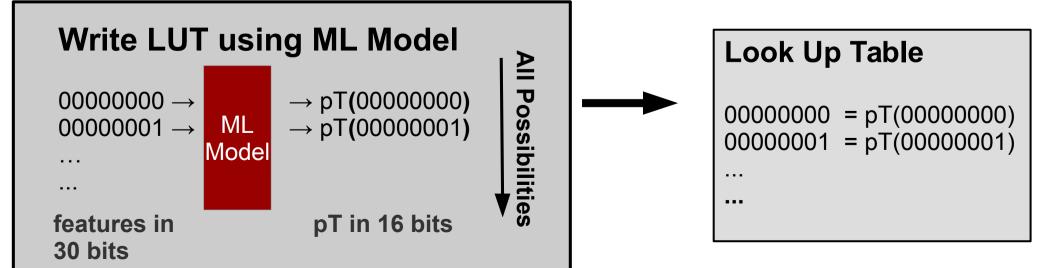
How to Have your cake and Eat it Too

- Want machine learning (ML) for accurate pT Assignment!
- Want it to operate in hardware quickly!
- Take a standard ML algorithm and estimate if it is fast enough
 - Boosted Decision Tree with standard settings* would take about 2500 ns
 - only have 500 ns total for ALL EMTF calculations
 - Need most of the 500 ns to process measurements from wires and strips, build tracks, and then evaluate θ, Φ values
 - Standard evaluation of ML algorithm is not feasible on these time scales!
 - Moreover we would need to store all of the ~15,000 logical (<,>,+)
 operations for the BDT onto the FPGA... takes up too much logic
 - and that's in addition to the logic already present
- 2500 operations to assign the pT for a single track! No thanks!
 - Reduce the 2500 operations into 1 operation

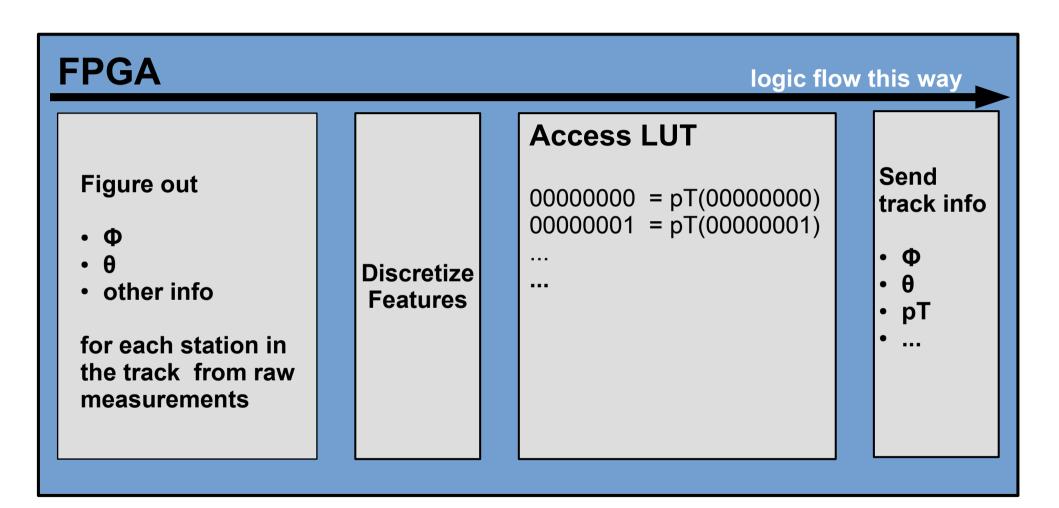
^{* 500} Trees, depTh of 4, estimated for ~ 1 GHz processor

Create a Look Up Table

- Turn evaluation from a Machine Learning (ML) Model into a single operation
- Trade time for memory
 - Create a Look Up Table (LUT)!
 - · Create offline, use online
 - Discretize features and fit into 30 bits
 - e.g. var1 = 10 bits, var2 = 5 bits, var3 = 5 bits, var4 = 5 bits, var5 = 5 bits
 - input = [var1 | var2 | var3 | var4 | var5] = 30 bits
 - Map each input to the ML model output and save the map
 - 2³⁰ possibilities w/ 9 bit outputs = 1.2 GB LUT
- Versatile method that works for any fit algorithm
 - However... Lose resolution on the features
 - Hard to fit lots of features into 30 bits



Summarizing the Logic



Results and Conclusions

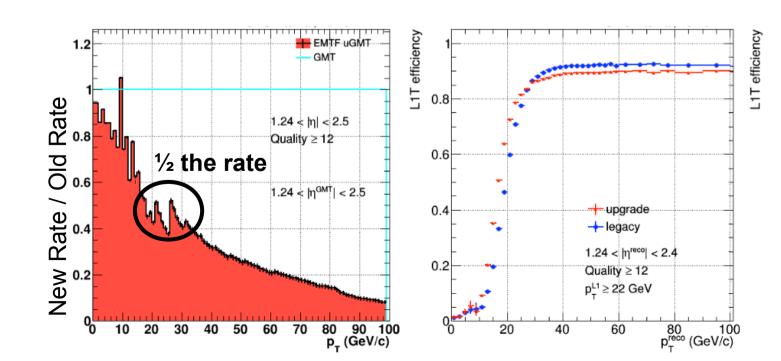
Results in Practice

At the EMTF

- We trained a forest of Boosted Decision Trees (BDTs)
- Then discretized features fitting them into 30 bits
- Converted 2^30 possible features into a 2 GB LUT
- Put the LUT into the FPGA
- Implemented this design in 2016/2017 data taking

Improved the EMTF trigger by a factor of 2!

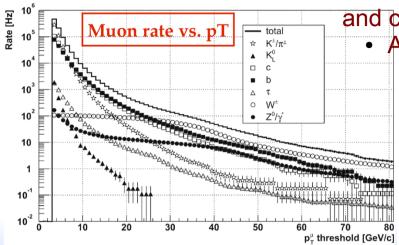
- 2x rate reduction (for pT > 22 GeV) with small loss of efficiency
- Comparing 2016/2017 BDT based EMTF to the 2015 EMTF trigger

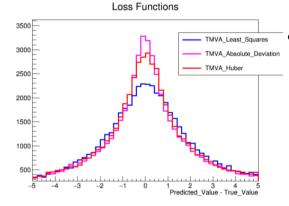


Lessons Learned

Interesting problem since it is somewhere between regression and classification

- Main Problem
 - 1000 5 GeV muons for every 25 GeV muons
 - Really need to focus on low momentum events
 - If low pT events are predicted greater than their actual pT the rate increases substantially!





Focus on low p1 more → lov Focus on low pT less → high

Loss Functions Tails TMVA_Least_Squares TMVA_Absolute_Deviation TMVA_Huber 102 60 80 100 120 140 160 180 200

- Use a Transformation + Loss Function to focus on low pT events
 - Targeting 1/pT makes differences in low pT large, count more in loss
 - Loss = |1/pT − 1/pT_true|² ← Change exponent to penalize differences more/less
 - Focus on low pT more → lower rate (good), lower efficiency (bad)
 - Focus on low pT less → higher rate (bad), higher efficiency (good)

Create variables to identify outliers

- Problem: strange $d\Phi$ bend between two chambers due to scattering or showering throws off pT assignment
- Add Feature: average dΦ, |dΦ| calculated without the outlier
- Add Feature: variable identifying the outlier station

Conclusions

- Implemented Boosted Decision Trees in a Field Programmable Gate Array
 - Created a Look Up Table (LUT)
 - · Make offline, use online
 - Map from 2³⁰ possible discretized feature values → 9 bit pT
 - LUT turns pT assignment into an O(1) operation running in << 500 ns
 - Accurate pT assignment improved our trigger by a factor of 2
- LUT method is versatile and possible for any Machine Learning method
 - Great for implementing a ML method where fast decisions are important (like a trigger)
 - Might be difficult to fit all important features into ~30 bits total
- Some Future Ideas
 - Train on Data rather than MC using HLT tracker pT as the "truth"
 - Very high statistics for training and testing very quickly
 - The pT distribution and hence the rate of muons differs between Data and MC
 - Craft a loss function that directly models our metrics: Rate and Efficiency

The End