PERFORMANCE STUDIES of GOOFIT on GPUs WHILE ESTIMATING
the GLOBAL STATISTICAL SIGNIFICANCE of A NEW PHYSICAL SIGNAL
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In the context of High Energy Physics analysis applications, GooFit is an open source data analysis tool that interfaces ROOT/RooFit to the CUDA parallel computing platform on nVidia GPU.
It is exploited in applications enabling the modeling of event data distributions and using (unbinned) maximum likelihood parameter estimation technique. Parameter estimation is a crucial part of many physics analyses.
The Probability Density Function (PDF) represents a physical model and its evaluation on large datasets is usually the bottleneck in the minimization task.

CPU GPU
GooFit acts as an interface between the MINUIT minimization algorithm (running on CPU) and a parallel processor (GPU) which allows a PDF to be evaluated in Tuning of fit } [memory [ PDF/NNL
parallel. Fit parameters are estimated at each Neg-Log-Like-lihood minimization step on the host side (CPU) while the PDF/NLL is evaluated on the device side (GPU). parameters ) transfers] ’L evaluation

Description and details about GooFit : R.Andreassen et al., GooFit: a library for massively parallelising maximum-likelihood fits, J. Phys.: Conf. Ser. 513 (2014) 052003 [CHEP2013 Proceedings].

To test the computing capabilities of GPUs with respect to CPU cores, a high-statistics pseudo-experiments (toys) technique has been implemented in RooFit & GooFit frameworks in order to estimate a p-value and
thus the (local or global) statistical significance of a signal reconstructed from data. The p-value is the probability that background fluctuations would - alone - give rise to a signal as much significant as that seen in the data.

Hardware setup consists in 2 servers (hosted @ ReCas-Bari Data Center): one equipped with 2 nVidia TeslaK20 and 32 cores (16+16 by HT), the other with 1 nVidia TeslaK40 and 40 cores (20+20)

RooFit with PROOF-LITE GooFit with MULTI PROCESS SERVER
To efficiently run RooFit MC toys in parallel on the 72 CPUs available on The nVidia Multi Process Server (MPS) tool allows the execution of - up to 16 - simultaneous
the 2 servers hosting the GPUs, PROOF-Lite is used. It has a pull architecture. processes on the same GPU acting as a scheduler and allowing a balanced full use of the GPU.

MPS / PROOF-LITE show a similar behaviour of the speed up as a function of processes / workers; both their Amdhal fits indicate a serial overhead of ~3% for the MC toys’ application execution.

MC TOYS for LOCAL SIGNIFICANCE

Aim : to estimate the local statistical significance of the structure observed by CMS close to the kinematical boundary of the J/y ¢ inv. mass,
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To get a stat. signif. >50, a P < 3x107 is needed (> 3.3M toys)

over the sample of MC toys.
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When dealing with an unexpected new signal, a global statistical significance must be estimated and the Look-Elsewhere-Effect (LEE) must be taken into account.
This implies to consider — within the same background-only fluctuation and everywhere in the relevant mass spectrum — any peaking behaviour with respect to the expected background model.

MC TOYS for GLOBAL SIGNIFICANCE

The LEE inclusion is addressed with a mass scan coupled to a clustering technique to identify the peaks from significant fluctuations
A pseudo-data inv. mass distribution of 15K candidates
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