

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Machine Learning for Antihydrogen Detection at ALPHA

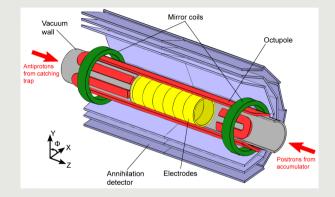
Andrea Capra TRIUMF - on behalf of the ALPHA collaboration ACAT 2017 - 24 August

Andrea Capra (TRIUMF/ALPHA collab.)

ML for \overline{H} detection at ALPHA

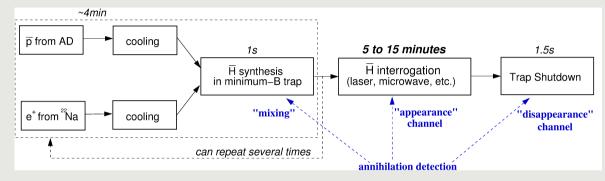
ACAT 2017 1 / 19

1 Introduction


- Motivations
- The ALPHA apparatus
- 2 H Annihilation Detection and Reconstruction
- \bigcirc MVA for \overline{H} Identification
- 4 Conclusions

Antihydrogen \overline{H} is a tool to explore fundamental symmetries

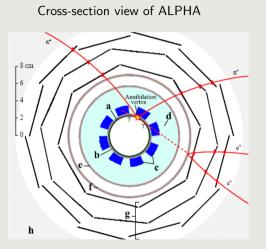
- Charge-Parity-Time (CPT) invariance
 - mass of antiparticles and particles, e.g., $|M(K^0) M(\overline{K^0})|/M < 6 \times 10^{-19}$ E. Abouzaid *et al.*, Phys. Rev. **D83**, 092001 (2011)
 - absolute value of the charges, e.g., $|Q(e^+) + Q(e^-)|/e < 4 \times 10^{-8}$ e.g., C. Patrignani *et al.* (PDG), Chin. Phys. C, **40**, 100001 (2016)
 - spectra of antiatoms and atoms: $|\nu_{1S-2S}(H) \nu_{1S-2S}(\overline{H})|/\nu_{1S-2S} < 2 \times 10^{-10}$ M. Ahmadi *et al.*, Nature **541**, 506-510 (2017)
- Weak Equivalence Principle
 - Measurement of the gravitational acceleration of \overline{H} is coming soon...



$1\,{\rm T}$ solenoid and laser path not shown

C. Amole et al., Nucl. Instrum. Meth. A735, 319-340 (2014).

ML for \overline{H} detection at ALPHA



Experiment	Protocol for $\overline{\mathbf{H}}$ Interrogation: Counting		
Laser 1S-2S	On-Resonance 243 nm	Off-Resonance 200 kHz	No Laser
Electric charge	Oscillating E field		No Field
Microwave	On-Resonance 28 GHz	Off-Resonance 10 MHz	No Microwave

H Annihilation Detector

- a Electrodes/UHV region (Al and Au-plated)
 - b Mirror coil(s) for \overline{H} axial confinement
 - c Octupole for \overline{H} radial confinement
 - d Liquid He space
 - e Cryostat wall (steel) and heat shield (Cu)
 - f OVC wall (steel)

g Annihilation detector

- Double-sided silicon detector.
- 3 layers, 72 hybrids modules.
- Track annihilation products: mostly π^{\pm} with $\langle p \rangle \approx 100 300 \, {\rm MeV}$
- h 1 T solenoid

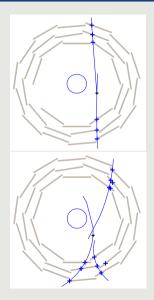
 \overline{H} annihilation position \iff the vertex The vertex is \overline{H} signature

- It is position from strips on the detector modules
- Identification of the tracks from hits
- Tracks fit to helices
- **③** Selection of tracks choose the ones due π^\pm
- Annihilation vertex is the point where the tracks pass closest to each other

Background is due to cosmic rays μ^{\pm}

Rate: $\approx 10\,\text{Hz}$ With "cuts analysis" rate: $\approx 47\,\text{mHz}$

Typical \overline{H} trapping rate: **10 per cycle**


Even considering the *shortest* "appearance channel": 14 cosmic rays can be detected.

Without strong(er) background suppression, the signal is therefore washed out.

A Classification Problem

 \overline{H} annihilation

Cosmic ray: easy

Cosmic ray: hard

Training is performed on real data - not on Monte Carlo

Background sample: cosmic rays $\approx 1.6M$ events Dedicated runs without antiparticles in the apparatus

Signal sample: "hot" \overline{H} (mixing) \approx 208k events

Annihilation recorded during \overline{H} synthesis (1 s every cycle). The z distribution can be very different for physics measurements.

Classifier: **Bagged Decision Tree** from SPR package http://statpatrec.sourceforge.net arXiv:physics/0507143 (2005)

- **()** number of hits $N_{\rm hit}$,
- Inumber of reconstructed tracks N_{helices},
- **③** number of reconstructed tracks used in vertexing $\tilde{N}_{\text{helices}}$,
- squared residual δ ,

$$\delta = \min_{i,j \in N_{\text{helices}}} \left\{ \sum_{h=1}^{6} (l_x(\tilde{t}_h) - x_h)^2 + (l_y(\tilde{t}_h) - y_h)^2 + (l_z(\tilde{t}_h) - z_h)^2 \text{ for } h \in i \text{ and } j \right\}$$

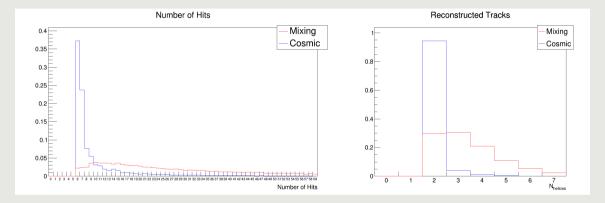
where

$${f I}(t) = \left\{ egin{array}{l} u_x \, t + x_0 \ u_y \, t + y_0 \ u_z \, t + z_0 \ , \end{array}
ight.$$

and

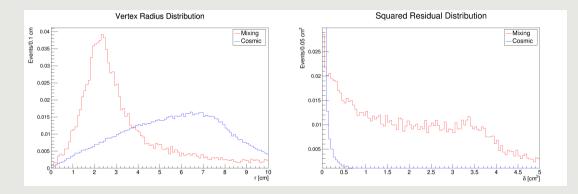
$$\tilde{t}_h = \frac{u_x(x_0 - x_h) + u_y(y_0 - y_h) + u_z(z_0 - z_h)}{|\mathbf{u}|^2}$$

- **5** ϕ component of generalized sphericity tensor eigenvector Σ_{ϕ} ,
- **o** z component of generalized sphericity tensor eigenvector Σ_z ,
- combination of two largest generalized sphericity tensor eigenvalues $\sqrt{\lambda_1^2 + \lambda_2^2}$,

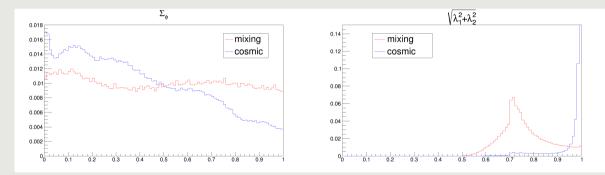

$$\mathcal{S}_{ab} = rac{1}{\mathcal{N}_{ ext{helices}}} \sum_{i=1}^{\mathcal{N}_{ ext{helices}}} \; rac{p_a^i \; p_b^i}{\left| \mathbf{p}_i
ight|^2} \, ,$$

where \mathbf{p}_i is the momentum of the *i*th reconstructed track and a, b = x, y, z. The eigenvalues λ_i of S with j = 1, 2, 3 are such that $\lambda_1 \ge \lambda_2 \ge \lambda_3$.

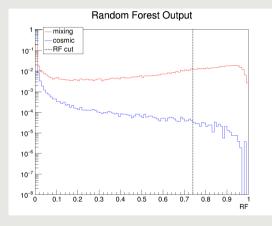
- **(3)** ϕ component of the reconstructed vertex,
- **9** *r* component of the reconstructed vertex.



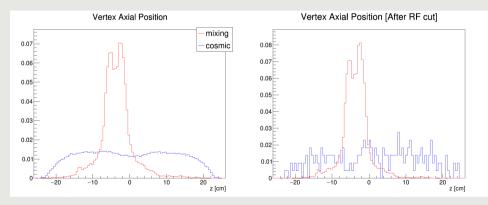
Discriminating Variables 1 and 2



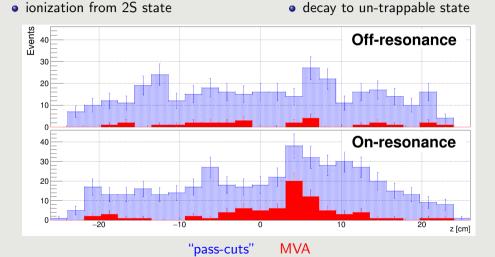
Discriminating Variables 4 and 9



Discriminating Variables 5 and 7


- 100 replicas, 4 variables, 16 events/leaf
- Bump Hunting to maximize Punzi significance ^S ³/₂ σ + √B

 arXiv:physics/0308063v2 (2003)
- Background Rate: 4 mHz (±7%)
- Signal Acceptance: $(37.6\pm0.2)\%$ of test sample or $\approx 50\%$ of "disappearance" channel


Consistency! z distribution

Test sample

Loss mechanism:

- ALPHA experiment offers new tool to search for new physics
- ALPHA relies upon $\overline{\mathsf{H}}$ identification by annihilation position reconstruction
- Background due to cosmic rays, strong suppression with MVA
- MVA trained on real data: both signal and background
- CPT test at 0.2 ppb level
- Current and future work:
 - Try TMVA
 - Increase the number of discriminating variables (17)
 - Use *deep learning* for reconstruction altogether.

Thanks to: S. Stracka, A. Olin and J. T. McKenna and to the ALPHA collaboration

Andrea Capra (TRIUMF/ALPHA collab.)

ML for \overline{H} detection at ALPHA

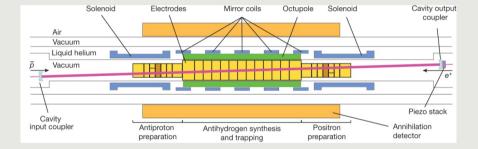
ACAT 2017 1 / 8

ADDITIONAL MATERIAL

Andrea Capra (TRIUMF/ALPHA collab.)

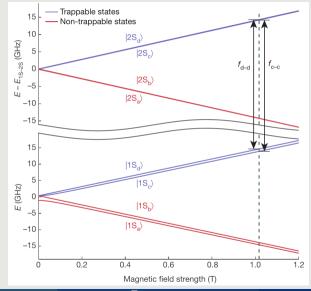
ML for \overline{H} detection at ALPHA

ACAT 2017 2 / 8


Antihydrogen synthesis sequence: MIXING

Dashed and solid curves represent electrostatic potentials before and after each step.

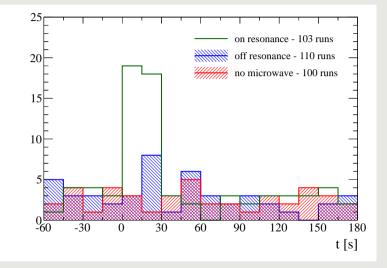
ML for \overline{H} detection at ALPHA

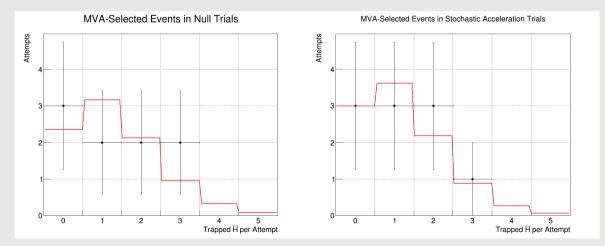


Andrea Capra (TRIUMF/ALPHA collab.)

ML for \overline{H} detection at ALPHA

ACAT 2017 5 / 8


Disappearance channel


	Background	Hevents	Uncertainty
On-resonance	0.7	67	8.2
Off-resonance	0.7	159	13
No laser	0.7	142	12

Appearance channel

	Background	\overline{H} events	Uncertainty
On-resonance	28.4	79	8.9
Off-resonance	28.4	27	5.2
No Laser	28.4	30	5.5

ACAT 2017

8 / 8