Novel functional and distributed
approaches to data analysis in ROOT

Guilherme Amadio (CERN) for the ROOT Team

ROOT

Data Analysis Framework

https://root.cern

https://root.cern

Outline

» The problem we are trying to solve
» TDataFrame: a declarative approach to data analysis
> Performance figures

> Ongoing R&D: distributing ROOT based data analysis

on Spark clusters

» Foreseen evolution

See talk A quantitative review of data formats for HEP analyses by J. Blomer!

https://indico.cern.ch/event/567550/contributions/2628878

The challenge posed by the
increase in luminosity

Even more events to analyse!

» Full exploitation of the LHC: highest priority in the
, adopted by the CERN Council and integrated into the
» Major LHC upgrade in ~2020: increase luminosity by 10x beyond the orlglnal

design.
LHC
Run 1 | ‘ Run 2 ‘ ‘ T
Lst ooy B 13514 TeV 14 TeV oy

injector upgrade S5to7)(1

splice consolidation cryo Point 4 limi . nomina

7 TeV 8 TeV button collimators DS collimation i(ilrtyeor;rgtliton HL-LHC luminosity
R2E project P2-P7(11 T dip.) regions installation

Civil Eng. P1-P5 _\

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
’ - q
radiation

damage
2 x nominal luminosity

experiment
ipgrade phase 2

experiment experiment upgrade |

75% beam pipes nominal luminosity

nominal
luminosity |

~

integrated
Iun?ngnoswy

http://hilumilhc.web.cern.ch 4

http://cerncourier.com/cws/article/cern/54020
http://cerncourier.com/cws/article/cern/54020
http://ec.europa.eu/research/infrastructures/index_en.cfm?pg=esfri-roadmap
http://hilumilhc.web.cern.ch/

How to cope with this?

An opportunity to improve our analysis toolset

Requirements:

|. Exploit modern, parallel architectures, including accelerators,
for data analysis
® |everage the experience accumulated parallelising
centralised data processing
2. Offer an easy programming model to scientists

e Obtain more results with less effort

CHEP 2016

Functional Chains R&D

* We are constantly looking for opportunities to apply implicit parallelism in ROOT

* | “Functional Chains” R&D being carried out
- Functional programming principles: no global states, no for/if/else/break

- Analogy with tools like ReactiveX*, R dataframe, Spark
- Gives room for optimising operations internally

Can this be a successful model for our physicists?

ROOT
f - ROOT.TFile("aliDataset.root")
aliTree - f.Events
dataFrame - TDataFrame(aliTree)

dataFrame.filter(sell).map(func2).cache().filter(sel3).histo('varl:var2').Draw('LEG0")

TDataFrame:
A Declarative
Approach to Data
Analysis in ROOT

“The comfort of the big data tools, with the speed of ROOT.”

TDataFrame:
A Declarative
Approach to Data
Analysis in ROOT

“The comfort of the big data tools, with the speed of ROOT.”

TDataFrame: Declarative Analysis

> New way to interact with ROOT columnar data format

® Inspiration from Pandas, Spark, and others
e Similar ideas proposed in the past (e.g. LINQToROOT by G. Watts)

> Analysis is a graph of:
e Transformations: filter, add a column, ...

e Actions: Fill an histogram, a profile, count events, ...

> Specify what you want and let ROOT choose how to do it

e Computation triggered lazily

e Several optimisations (e.g. partitioning, caching, reordering, parallelisation)

DOI 10.5281/zenodo.260230 9

https://zenodo.org/record/260230

TDataFrame: Less Boilerplate Code

Full control of the loop with TTreeReader, but

> Needs boilerplate code
> Not easily parallelisable

> Simple operations implemented over and over again

T TreeReader TDataFrame
TTreeReader data(tree);
TTreeReaderValue<A> x(data, "x"); TDataFrame tdf(tree);
TTreeReaderValue<A> y(data, "y"); aquto h =
TTreeReaderValue<A> z(data, "z"); tdf.Filter(IsGoodEvent, {"x","y","z"})
while(data.Next()) .HistolD("x");

i1f(IsGoodEvent(*x, *y, *z))
h.Fill(*x)

DataFrame: Trivial Parallelisation

> A single line change to enable implicit parallelisation in ROOT
e Parallelises not only TDataFrame, but also ROOT 1/O, etc

Sequential Code

TDataFrame tdf(tree, {"x","y","z"});
auto h = tdf. Fllter(IsGoodEvent)
.HistolD(); Parallel Code

ROOT: :EnableImplicitMT();
/TDataFr‘ame tdf(tree, {"x","y","z"});
auto h = tdf. F11ter(IsGoodEvent)
.HistolD();

f Easy Programming Model via JITing

» TDataFrame is heavily templated C++ code
® Performance, type safety

> JIT compilation at runtime for type deduction

Can write this Instead of this

d.HistolD("myCol"); d.HistolD<float>("myCol");

d.Define("vlv2",
d.Define("viv2","vl*v2"); [1(T &v1, T &v2){return vi*v2;},
/ {Ilvlll,llvzll});

Example: Cuts and Histograms

> All actions are executed in the same loop

> Type inference using just-in-time compilation

Simple Analysis

TDataFrame d("myTree", "myFile.root");
auto hp = d.Filter("theta > 0.0").HistolD("pt");
auto hn = d.Filter("theta < 0.0").HistolD("pt");

hp->Draw(); // Overloaded ->: Event Loop runs once here
hn->Draw("Same"); // No need to re-run here

A Functional Graph

» More than a simple chain, a graph of actions and

transformations

// d2 1s a new data-frame, 1t 1s

// a transformed version of d

auto d2 = d.Filter("x > 0")
.Define("z", "x*x + y*y");

// makRe multiple histograms out of 1t
auto hz = d2.HistolD("z");
auto hxy = d2.Histo2D("x","y");

@

d2

A New Way of Writing TTrees

> TDataFrame Snapshot Action
» Read data, add custom columns, write out

> Uses new TBufferMerger internally

TDataFrame d("myTree", "myFile.root");
auto d2 = d.Filter("@ == bl % 2");
.Define("bl _square", "bl * bl");

// Write selected columns in a TTree on a TFile

d2.Snapshot("myNewTree", "myNewFile.root",
{"bl_square", "bl"});

Good performance! See also Increasing Parallelism in ROOT /O for more information 5

https://indico.cern.ch/event/567550/contributions/2627169

Transformations and Actions

Transformations Actions
> Define > Histograms
> Filter » Min, Max, Mean
> Range > Profile
» Reduce
> Snapshot

See online documentation for more information

https://root.cern.ch/doc/master/classROOT_1_1Experimental_1_1TDataFrame.html

TDataFrame:
Performance
Figures

CMS W Mass Analysis

CMS MC W Mass Analysis

> Xeon(R) CPU E5-2650 v2 @ 2.60GHz g "I -
> 32 logical cores, 2 NUMA domains 3 1o /‘,//
> 2.5 GB input file (95 clusters, ~2M events) 10i /
» CMS MC analysis ntuple (smeared) i i
> Filling 1.1k TH3F with 70x10x10 bins 80
> 8 kinematic and quality cuts 6: |
» Timines includ i f hi : / - HW threading regime
gs include merging of histograms o |
4

0 Il 1 1 | | |]| | 1 l | | 1 | | | | L 1 1 | | 1
5 10 15 20 25 30
Cores

Thanks to M. Dunser

LHCDb OpenData

LHCb Open Data, SSD Cold Caches

uncompressed

1400 > Laptop, 8 logical cores
B . compressed . > .
N > Simplified analysis
— 1200 ,
= n » TDataFrame: little overhead
2 B .
& 1000— with respect to T TreeReader
(2] L = .
= - - _ % e Mostly due to Filters,
2 800~ 3§ § & oy L
LUl N g § E 3 5 X optimizations under
- - S E & 8§k
© 600— 5 o 3 5 o 3 development
i — T E E T £ E
n - . 8 ¢ 8 @
= [ge itk i
o 400—% ¢ B8 -~ 9 % &
D g E EE[SFEEF
Lk F FE F FE E
O w® O O O O O
200He © 40406 0 0 ©
—PNECH RECN N e £ @ (@
0 _ https://github.com/jblomer/iotools
File Format

See talk A gquantitative review of data formats for HEP analyses by J. Blomer! 19

https://github.com/jblomer/iotools
https://indico.cern.ch/event/567550/contributions/2628878

Distributing
Work on Spark
Resources: R&D

Parallelising ROOT with Spark

> Analyse ROOT data with PYROOT + PySpark

» Minimal interface: Map-Reduce pattern to process T Trees

> Relies on shared filesystems on the driver and worker nodes
e For example, CVMFS and fuse-mounted EOS

ROOT imports
import ROOT
from DistROOT import DistTree

Build the DistTree

dTree = DistTree(filelist = ["myFilel", "myFile2"],
treename = “"myTree",
npartitions = 8)

Trigger the parallel processing
myHistos = dTree.ProcessAndMerge(fillHistos, mergeHistos)

Tested on CERN

infrastructure in
collaboration with IT-DB
and IT-ST groups.

https://github.com/etejedor/root-spark

21

https://github.com/etejedor/root-spark

9 tegrated Monitoring Infrastructure

treename = "WTreeProducer"”,
npartitions = 16)

histList = dTree.ProcessAndMerge(fillCMS, mergeCMS)

JobID Job Name Status Stages Tasks Submission Time Duration M o n ito ri ng RO OT an d Oth e r

v 2 collect 11 12 minutes ago 2s
Stageld Stage Name Status Tasks Submission Time Duration Wo rkfl OWS 0 n S Pa, rk C | u Ste rs

o S . (Krishnan R., GSoC student)

Stageld Stage Name Status Tasks Submission Time Duration

5 treeReduce COMPLETED 7 minutes ago 15s
- [- mase

treename = "WlreeProducer",
npartitions = 16)

histlList = dTree.ProcessAndMerge(fillCMS, mergeCMs)

4 EXECUTORS 4 CORES 2 COMPLETED
20:44 20:45 20046 20:47 20:48

The service (
(Service for Web based f —
ANalysis) will be :

pP05153074600

» |
R S— N S—
interfaced to CERN T
——

]
5

B E

Itrac1508.cern.|

Tasks: . : II
Spark resources. ; .

ltrac1502.cern.

[

Tasks: 19 26

3] 22 30

LIac)A05 corn.

https://github.com/krishnan-r/sparkmonitor 22

https://swan.web.cern.ch
https://github.com/krishnan-r/sparkmonitor

Bottomline

ROOT now supports declarative data analysis in C++ with TDataFrame

PyROOT already partially supported

Friendly programming model

Same result with less lines of code

Seamless implicit parallelisation

Can be used to write datasets too!
Distributed analysis with PYROOT and Spark
Will be available in SWAN at CERN

vV v v v v v v

Some forthcoming improvements (targeting ROOT 6.12 - November):

> Provide adapters for formats also other than ROOT (xAOD, csv, Parquet)
> Improve TDataFrame integration with PyROOT, e.g. using Python callables

» Refine writing procedure for improved performance

23

