
https://root.cern

ROOT
Data Analysis Framework

Novel functional and distributed
approaches to data analysis in ROOT

Guilherme Amadio (CERN) for the ROOT Team

https://root.cern

Outline

▶ The problem we are trying to solve

▶ TDataFrame: a declarative approach to data analysis

▶ Performance figures

▶ Ongoing R&D: distributing ROOT based data analysis
on Spark clusters

▶ Foreseen evolution

See talk A quantitative review of data formats for HEP analyses by J. Blomer!

All available in
ROOT 6.10!

2

https://indico.cern.ch/event/567550/contributions/2628878

3

The challenge posed by the
increase in luminosity

4

Even more events to analyse!

▶ Full exploitation of the LHC: highest priority in the European Strategy for Particle
Physics, adopted by the CERN Council and integrated into the ESFRI Roadmap.

▶ Major LHC upgrade in ~2020: increase luminosity by 10x beyond the original
design.

NOW

http://hilumilhc.web.cern.ch

2x

10x

http://cerncourier.com/cws/article/cern/54020
http://cerncourier.com/cws/article/cern/54020
http://ec.europa.eu/research/infrastructures/index_en.cfm?pg=esfri-roadmap
http://hilumilhc.web.cern.ch/

An opportunity to improve our analysis toolset

Requirements:
1. Exploit modern, parallel architectures, including accelerators,

for data analysis
● Leverage the experience accumulated parallelising

centralised data processing
2. Offer an easy programming model to scientists

● Obtain more results with less effort

5

How to cope with this?

6

CHEP 2016

7

TDataFrame:
A Declarative

Approach to Data
Analysis in ROOT

“The comfort of the big data tools, with the speed of ROOT.”

8

TDataFrame:
A Declarative

Approach to Data
Analysis in ROOT

“The comfort of the big data tools, with the speed of ROOT.”

Available since ROOT 6.10 (June ‘17)

▶ New way to interact with ROOT columnar data format
● Inspiration from Pandas, Spark, and others
● Similar ideas proposed in the past (e.g. LINQToROOT by G. Watts)

▶ Analysis is a graph of:
● Transformations: filter, add a column, …
● Actions: Fill an histogram, a profile, count events, …

▶ Specify what you want and let ROOT choose how to do it
● Computation triggered lazily
● Several optimisations (e.g. partitioning, caching, reordering, parallelisation)

9

TDataFrame: Declarative Analysis

https://zenodo.org/record/260230

Full control of the loop with TTreeReader, but
▶ Needs boilerplate code
▶ Not easily parallelisable
▶ Simple operations implemented over and over again

10

TDataFrame: Less Boilerplate Code

TTreeReader data(tree);

TTreeReaderValue<A> x(data, "x");

TTreeReaderValue<A> y(data, "y");

TTreeReaderValue<A> z(data, "z");

while(data.Next())

 if(IsGoodEvent(*x, *y, *z))

 h.Fill(*x)

TDataFrame tdf(tree);

auto h =

 tdf.Filter(IsGoodEvent, {"x","y","z"})

 .Histo1D("x");

TTreeReader TDataFrame

11

TDataFrame: Trivial Parallelisation

TDataFrame tdf(tree, {"x","y","z"});

auto h = tdf.Filter(IsGoodEvent)

 .Histo1D();

ROOT::EnableImplicitMT();

TDataFrame tdf(tree, {"x","y","z"});

auto h = tdf.Filter(IsGoodEvent)

 .Histo1D();

Sequential Code

Parallel Code

▶ A single line change to enable implicit parallelisation in ROOT
● Parallelises not only TDataFrame, but also ROOT I/O, etc

Parallelism at the
reach of anyone!

▶ TDataFrame is heavily templated C++ code
● Performance, type safety

▶ JIT compilation at runtime for type deduction

12

Easy Programming Model via JITing

Can write this Instead of this

JIT

JIT d.Histo1D<float>("myCol");d.Histo1D("myCol");

d.Define("v1v2",

 [](T &v1, T &v2){return v1*v2;},

 {"v1","v2"});

 d.Define("v1v2","v1*v2");

A string to replace a callable, no DSL but C++ (jitted!)

▶ All actions are executed in the same loop
▶ Type inference using just-in-time compilation

13

Example: Cuts and Histograms

TDataFrame d("myTree", "myFile.root");

auto hp = d.Filter("theta > 0.0").Histo1D("pt");

auto hn = d.Filter("theta < 0.0").Histo1D("pt");

hp->Draw(); // Overloaded ->: Event Loop runs once here

hn->Draw("Same"); // No need to re-run here

Simple Analysis

Describe all calculations first, run all of them at once later.

▶ More than a simple chain, a graph of actions and
transformations

14

A Functional Graph

// d2 is a new data-frame, it is

// a transformed version of d

auto d2 = d.Filter("x > 0")

 .Define("z", "x*x + y*y");

// make multiple histograms out of it

auto hz = d2.Histo1D("z");

auto hxy = d2.Histo2D("x","y");

data

filter
x > 0

histo
x,y

histo
z

define
z

d

d2

Complex control flows can be
expressed easily

▶ TDataFrame Snapshot Action
▶ Read data, add custom columns, write out
▶ Uses new TBufferMerger internally

15

A New Way of Writing TTrees

TDataFrame d("myTree", "myFile.root");

auto d2 = d.Filter("0 == b1 % 2");

 .Define("b1_square", "b1 * b1");

// Write selected columns in a TTree on a TFile

d2.Snapshot("myNewTree", "myNewFile.root",

 {"b1_square", "b1"});

One line to write out a dataset, it works in parallel too.

Good performance! See also Increasing Parallelism in ROOT I/O for more information

https://indico.cern.ch/event/567550/contributions/2627169

Transformations

▶ Define
▶ Filter
▶ Range

16

Transformations and Actions

Actions

▶ Histograms
▶ Min, Max, Mean
▶ Profile
▶ Reduce
▶ Snapshot

See online documentation for more information

https://root.cern.ch/doc/master/classROOT_1_1Experimental_1_1TDataFrame.html

TDataFrame:
Performance

Figures

17

▶ Xeon(R) CPU E5-2650 v2 @ 2.60GHz
▶ 32 logical cores, 2 NUMA domains
▶ 2.5 GB input file (95 clusters, ~2M events)
▶ CMS MC analysis ntuple (smeared)
▶ Filling 1.1k TH3F with 70x10x10 bins
▶ 8 kinematic and quality cuts
▶ Timings include merging of histograms

18

CMS W Mass Analysis

12x speedup with 16 cores,
NUMA effects and merging included! Thanks to M. Dunser

▶ Laptop, 8 logical cores
▶ Simplified analysis
▶ TDataFrame: little overhead

with respect to TTreeReader
● Mostly due to Filters,

optimizations under
development

19

LHCb OpenData

File Format

LHCb Open Data, SSD Cold Caches

https://github.com/jblomer/iotools

ImplicitMT and TDataFrame:
same code, parallelism for free!

See talk A quantitative review of data formats for HEP analyses by J. Blomer!

https://github.com/jblomer/iotools
https://indico.cern.ch/event/567550/contributions/2628878

Distributing
Work on Spark

Resources: R&D

20

▶ Analyse ROOT data with PyROOT + PySpark
▶ Minimal interface: Map-Reduce pattern to process TTrees
▶ Relies on shared filesystems on the driver and worker nodes

● For example, CVMFS and fuse-mounted EOS

21

Parallelising ROOT with Spark

Tested on CERN
infrastructure in
collaboration with IT-DB
and IT-ST groups.

Promising R&D

https://github.com/etejedor/root-spark

https://github.com/etejedor/root-spark

22

Integrated Monitoring Infrastructure

The SWAN service
(Service for Web based
ANalysis) will be
interfaced to CERN
Spark resources.

Monitoring ROOT and other
workflows on Spark clusters
(Krishnan R., GSoC student)

https://github.com/krishnan-r/sparkmonitor

https://swan.web.cern.ch
https://github.com/krishnan-r/sparkmonitor

ROOT now supports declarative data analysis in C++ with TDataFrame

▶ PyROOT already partially supported
▶ Friendly programming model
▶ Same result with less lines of code
▶ Seamless implicit parallelisation
▶ Can be used to write datasets too!
▶ Distributed analysis with PyROOT and Spark
▶ Will be available in SWAN at CERN

Some forthcoming improvements (targeting ROOT 6.12 - November):

▶ Provide adapters for formats also other than ROOT (xAOD, csv, Parquet)
▶ Improve TDataFrame integration with PyROOT, e.g. using Python callables
▶ Refine writing procedure for improved performance

23

Bottomline

