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Outline

» The problem we are trying to solve
» TDataFrame: a declarative approach to data analysis
> Performance figures

> Ongoing R&D: distributing ROOT based data analysis

on Spark clusters

» Foreseen evolution

See talk A quantitative review of data formats for HEP analyses by J. Blomer!



https://indico.cern.ch/event/567550/contributions/2628878

The challenge posed by the
increase in luminosity



Even more events to analyse!

» Full exploitation of the LHC: highest priority in the
, adopted by the CERN Council and integrated into the
» Major LHC upgrade in ~2020: increase luminosity by 10x beyond the orlglnal

design.
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How to cope with this?

An opportunity to improve our analysis toolset

Requirements:

|. Exploit modern, parallel architectures, including accelerators,
for data analysis
® |everage the experience accumulated parallelising
centralised data processing
2. Offer an easy programming model to scientists

e Obtain more results with less effort



CHEP 2016

Functional Chains R&D

*  We are constantly looking for opportunities to apply implicit parallelism in ROOT

* | “Functional Chains” R&D being carried out
- Functional programming principles: no global states, no for/if/else/break

- Analogy with tools like ReactiveX*, R dataframe, Spark
- Gives room for optimising operations internally

Can this be a successful model for our physicists?

ROOT
f - ROOT.TFile("aliDataset.root")
aliTree - f.Events
dataFrame - TDataFrame(aliTree)

dataFrame.filter(sell).map(func2).cache().filter(sel3).histo('varl:var2').Draw('LEG0")



TDataFrame:
A Declarative
Approach to Data
Analysis in ROOT

“The comfort of the big data tools, with the speed of ROOT.”
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TDataFrame: Declarative Analysis

> New way to interact with ROOT columnar data format

® Inspiration from Pandas, Spark, and others
e Similar ideas proposed in the past (e.g. LINQToROOT by G. Watts)

> Analysis is a graph of:
e Transformations: filter, add a column, ...

e Actions: Fill an histogram, a profile, count events, ...

> Specify what you want and let ROOT choose how to do it

e Computation triggered lazily

e Several optimisations (e.g. partitioning, caching, reordering, parallelisation)

DOI 10.5281/zenodo.260230 9


https://zenodo.org/record/260230

TDataFrame: Less Boilerplate Code

Full control of the loop with TTreeReader, but

> Needs boilerplate code
> Not easily parallelisable

> Simple operations implemented over and over again

T TreeReader TDataFrame
TTreeReader data(tree);
TTreeReaderValue<A> x(data, "x"); TDataFrame tdf(tree);
TTreeReaderValue<A> y(data, "y"); aquto h =
TTreeReaderValue<A> z(data, "z"); tdf.Filter(IsGoodEvent, {"x","y","z"})
while(data.Next()) .HistolD("x");

i1f(IsGoodEvent(*x, *y, *z))
h.Fill(*x)



DataFrame: Trivial Parallelisation

> A single line change to enable implicit parallelisation in ROOT
e Parallelises not only TDataFrame, but also ROOT 1/O, etc

Sequential Code

TDataFrame tdf(tree, {"x","y","z"});
auto h = tdf. Fllter(IsGoodEvent)
.HistolD(); Parallel Code

ROOT: :EnableImplicitMT();
/TDataFr‘ame tdf(tree, {"x","y","z"});
auto h = tdf. F11ter(IsGoodEvent)
.HistolD();




f Easy Programming Model via JITing

» TDataFrame is heavily templated C++ code
® Performance, type safety

> JIT compilation at runtime for type deduction

Can write this Instead of this

d.HistolD("myCol"); d.HistolD<float>("myCol");

d.Define("vlv2",
d.Define("viv2","vl*v2"); [1(T &v1, T &v2){return vi*v2;},
/ {Ilvlll,llvzll});



Example: Cuts and Histograms

> All actions are executed in the same loop

> Type inference using just-in-time compilation

Simple Analysis

TDataFrame d("myTree", "myFile.root");
auto hp = d.Filter("theta > 0.0").HistolD("pt");
auto hn = d.Filter("theta < 0.0").HistolD("pt");

hp->Draw(); // Overloaded ->: Event Loop runs once here
hn->Draw("Same"); // No need to re-run here




A Functional Graph

» More than a simple chain, a graph of actions and

transformations

// d2 1s a new data-frame, 1t 1s

// a transformed version of d

auto d2 = d.Filter("x > 0")
.Define("z", "x*x + y*y");

// makRe multiple histograms out of 1t
auto hz = d2.HistolD("z");
auto hxy = d2.Histo2D("x","y");

@

d2




A New Way of Writing TTrees

> TDataFrame Snapshot Action
» Read data, add custom columns, write out

> Uses new TBufferMerger internally

TDataFrame d("myTree", "myFile.root");
auto d2 = d.Filter("@ == bl % 2");
.Define("bl _square", "bl * bl");

// Write selected columns in a TTree on a TFile

d2.Snapshot("myNewTree", "myNewFile.root",
{"bl_square", "bl"});

Good performance! See also Increasing Parallelism in ROOT /O for more information 5


https://indico.cern.ch/event/567550/contributions/2627169

Transformations and Actions

Transformations Actions
> Define > Histograms
> Filter » Min, Max, Mean
> Range > Profile
» Reduce
> Snapshot

See online documentation for more information


https://root.cern.ch/doc/master/classROOT_1_1Experimental_1_1TDataFrame.html

TDataFrame:
Performance
Figures



CMS W Mass Analysis

CMS MC W Mass Analysis
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LHCDb OpenData

LHCb Open Data, SSD Cold Caches
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See talk A gquantitative review of data formats for HEP analyses by J. Blomer! 19
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Distributing
Work on Spark
Resources: R&D




Parallelising ROOT with Spark

> Analyse ROOT data with PYROOT + PySpark

» Minimal interface: Map-Reduce pattern to process T Trees

> Relies on shared filesystems on the driver and worker nodes
e For example, CVMFS and fuse-mounted EOS

# ROOT imports
import ROOT
from DistROOT import DistTree

# Build the DistTree

dTree = DistTree(filelist = ["myFilel", "myFile2"],
treename = “"myTree",
npartitions = 8)

# Trigger the parallel processing
myHistos = dTree.ProcessAndMerge(fillHistos, mergeHistos)

Tested on CERN

infrastructure in
collaboration with IT-DB
and IT-ST groups.

https://github.com/etejedor/root-spark

21


https://github.com/etejedor/root-spark

9 tegrated Monitoring Infrastructure

treename = "WTreeProducer"”,
npartitions = 16)

histList = dTree.ProcessAndMerge(fillCMS, mergeCMS)
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https://swan.web.cern.ch
https://github.com/krishnan-r/sparkmonitor

Bottomline

ROOT now supports declarative data analysis in C++ with TDataFrame

PyROOT already partially supported

Friendly programming model

Same result with less lines of code

Seamless implicit parallelisation

Can be used to write datasets too!
Distributed analysis with PYROOT and Spark
Will be available in SWAN at CERN

vV v v v v v v

Some forthcoming improvements (targeting ROOT 6.12 - November):

> Provide adapters for formats also other than ROOT (xAOD, csv, Parquet)
> Improve TDataFrame integration with PyROOT, e.g. using Python callables

» Refine writing procedure for improved performance
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