
Parallelized Kalman-Filter-Based Reconstruction
of Particle Tracks on Many-Core Architectures

ACAT2017

G. Cerati4, P. Elmer3, S. Krutelyov1, S. Lantz2, M. Lefebvre3, M. Masciovecchio1,  
K. McDermott2, D. Riley2, M. Tadel1, P. Wittich2, F. Würthwein1, A. Yagil1

1. University of California – San Diego
2. Cornell University
3. Princeton University
4. Fermi National Accelerator Laboratory

Kalman Filter Tracking !
on Parallel Architectures"

G. Cerati1, P. Elmer3, S. Krutelyov1, S. Lantz2, M. Lefebvre3, "
K. McDermott2, D. Riley2, M. Tadel1, P. Wittich2, F. Würthwein1, A. Yagil1"

1.  University of California – San Diego"
2.  Cornell University"
3.  Princeton University"

USCMS 2016: May 19, 2016"

Kalman Filter Tracking !
on Parallel Architectures"

G. Cerati1, P. Elmer3, S. Krutelyov1, S. Lantz2, M. Lefebvre3, "
K. McDermott2, D. Riley2, M. Tadel1, P. Wittich2, F. Würthwein1, A. Yagil1"

1.  University of California – San Diego"
2.  Cornell University"
3.  Princeton University"

USCMS 2016: May 19, 2016"

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Why Many-Core?

• Instantaneous luminosity of the LHC is
expected to continue increasing the
High Luminosity era

• Higher detector occupancy means more
time spent in event reconstruction

2Why Parallelizing?

• By 2025, the instantaneous luminosity of the LHC
will increase by a factor of 2.5, transitioning to the
High Luminosity LHC

• Increase in detector occupancy leads to significant
strain on read-out, selection, and reconstruction

• Clock speed stopped scaling
• Number of transistors keeps doubling

every ~18 months
ÎMulti-core architectures

• E.g. Xeon, MIC, GPUs
3

Why Parallelizing?

• By 2025, the instantaneous luminosity of the LHC
will increase by a factor of 2.5, transitioning to the
High Luminosity LHC

• Increase in detector occupancy leads to significant
strain on read-out, selection, and reconstruction

• Clock speed stopped scaling
• Number of transistors keeps doubling

every ~18 months
ÎMulti-core architectures

• E.g. Xeon, MIC, GPUs
3

• Clock speed has stopped scaling (power
consumption, heat dissipation, etc.)

• Number of transistors is still increasing
• More cores/chip, more SIMD

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Kalman Filter
Kalman Filter two-step:

• Produce an estimate of the current state (prediction)
• Update the state with the next measurement

Why use it for tracking:
• Robust handling of multiple scattering, energy loss, and other material effects
• Widely used in the field
• Demonstrated physics performance

Our goals for Kalman Filter (KF) track building on many-core architectures
• Make effective use of parallel and vector architectures
• Maintain physics performance
• Preserve consistent systematics across platforms

3

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Track Building Basics
Algorithm (for a single seed):

• Start with a seed track from 3 or more measurements
- Seed finding is currently out of scope for us

• Estimate the track state from the seed track
• Propagate the track state to the next detector layer
• Find candidate detector response “hits” near the projected

intersection point(s) of the track with the detector
• Evaluate the goodness of fit of each hit wrt the track
• Select the best fit track/hit combinations as track candidates
• Update the estimated state of all track candidates with the

new hit
• Propagate all track candidates to the next layer and iterate

4

G. Cerati (UCSD) 2016/03/16 12

Kalman Filter reconstruction

Figure 2. Left: Basic unit of the Kalman Filter algorithm. At each step, position information
from hits is used to estimate the track parameters and their uncertainties. The red circle
represents the measurement (a hit). The blue point on layer N represents the estimated state
(position and direction) at layer N before taking into account information from hits on that
layer. The yellow point is the updated state at layer N , taking into account all hits from up to
and including layer N . Right: Cartoon representing the two stages of fitting: forward fit and
backward smoothing. For this test we do not perform a smoothing step.

h_pt_pull_fit
Entries 47724
Mean -0.3016
RMS 1.338
Underflow 1026
Overflow 322
Prob 1.7e-08
Constant 10.5± 1731
Mean 0.0050± -0.2683
Sigma 0.004± 1.038

)fit
T

(pσ)/fit
T

 - pMC
T

(p
-10 -8 -6 -4 -2 0 2 4 6 8 10

Tr
ac

ks

0

200

400

600

800

1000

1200

1400

1600

1800

h_pt_pull_fit
Entries 47724
Mean -0.3016
RMS 1.338
Underflow 1026
Overflow 322
Prob 1.7e-08
Constant 10.5± 1731
Mean 0.0050± -0.2683
Sigma 0.004± 1.038

 Pull MC-Fit
T

p
h_x_pull_update

Entries 490249
Mean 0.0005957
RMS 1.233
Underflow 2763
Overflow 2820
Prob 0
Constant 6.614e+01± 3.559e+04
Mean 0.001587± 0.001464
Sigma 0.001± 1.069

)update(xσ)/update - xinit(x
-10 -8 -6 -4 -2 0 2 4 6 8 10

Hi
ts

0

5000

10000

15000

20000

25000

30000

35000

h_x_pull_update
Entries 490249
Mean 0.0005957
RMS 1.233
Underflow 2763
Overflow 2820
Prob 0
Constant 6.614e+01± 3.559e+04
Mean 0.001587± 0.001464
Sigma 0.001± 1.069

x Pull Init Hit-Update Hit

Figure 3. p

T

and position pull plots for the fit. The performance of the fit is under control.

As can be seen in Fig. 2 (right), the track fit consists of the simple repetition of the basic logic
unit for all the pre-determined track hits and therefore it is the easiest case to test. It is divided in
two steps: a forward fit and a backward smoothing stage for optimal performance. For this test,
only forward fit is run. The Kalman Filter requires initial estimation of track parameters to get
started. In our test, the starting state is taken directly from simulation with 100% uncertainty.
As a more realistic option, we also implemented a parabolic fit in the conformal space to define
initial parameters. For the fitting test, the hits are attached to a track “by name” (i.e., no
pattern recognition is performed) and a Kalman Filter fitting stage is performed. Figure 3
shows the p

T

and position pulls for the resulting fit with Gaussian distributions consistent with

seed

track fittrack building
The Kalman Filter track reconstruction

searches for hits along the track direction,
with a search window that shrinks when

more measurements are added.

The track reconstruction process can be
divided in 3 steps: track seeding (initial

track prototype), building (hit finding) and
fitting (final parameter estimate).

The track fit is the bare repetition of the
basic unit, ideal as a starting point.

Track building is the most time
consuming part - it involves branching
points of variable size, with the simplest

version degenerating into the track fit case.

Track seeding not fully implemented yet,
for now seeds are defined using MC info.

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Track Building Challenges
Good efficiency requires considering multiple hypotheses

• In a dense detector, many tracks will find hit candidates that are the best local fit but
lead to a globally poor fit

• Acceptable efficiency typically requires considering ~6 or more track hypotheses for
every seed depending on detector occupancy

Track building involves multiple branch points
• Selecting candidate hits at each layer
• Evaluating a variable number of track candidate/hit candidate combinations
• Selecting the best combinations for propagation to the next layer
• Many seeds turn out to be false leads, dying out after a few layers

Branch points lead to irregular work loads and memory access patterns

5

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Our Approach
Start simple:

• Knights Corner (KNC) Xeon PHI and Sandy Bridge (SNB) Xeon
• Regular cylindrical geometry
• Lots of tracks per event, uniformly distributed in η, simplifying work distribution
• Tracks seeds from Monte Carlo “truth”
• Track fitting (all hits known) as a warm up exercise before track building
• Develop measurement and validation tools, techniques and intuition

Then add complications—this is where we are now:
• Realistic geometry with endcaps and transition regions
• Realistic events from CMS simulation
• Seeds from CMS track finding
• Additional platforms: Knights Landing, GPGPU

6

D. Riley (Cornell) — ACAT2017 — 2017-08-21

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

Data structure: Matriplex
“Matrix-major” matrix
representation designed to fill a
vector unit with n small matrices
operated on in synch

Use vector-unit width on Xeons
• With or without intrinsics
• Shorter vector sizes w/o intrinsics
• For GPUs, use the same layout with

very large vector width

Interface template common to
Xeon and GPU versions

7

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Results from Starting Simple
Results are from a KNC Xeon Phi 7120P

• 61 cores, but needs 122 threads to utilize all clock
cycles

• AVX-512 vector width gives 16 single-precision floats
• SNB Xeon results generally better

- But not as interesting

Parallelization:
• Matriplexes are assigned to threads via Threading

Building Blocks (TBB) tasks
• Near ideal up to the number of physical cores, some

resource contention past that

Vectorization:
• Track fitting achieves about half the ideal vector speedup
• Track building vectorization still needs work

8

KNC Vector Speedup

Sp
ee

du
p

0

2

4

6

8

10

12

14

16

Vector Width
0 2 4 6 8 10 12 14 16

Fitting Building Ideal

KNC Parallel Speedup

Sp
ee

du
p

0

30

60

90

120

150

180

210

Number of threads
0 30 60 90 120 150 180 210

Fitting Building Ideal

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Lessons from the Simple Version
Physics performance lessons:

• Coordinate system choice matters
- We eventually adopted spatial Cartesian, polar momentum
- Error matrix is more complex
- Better prediction performance speeds up track finding

Computing performance:
• Keep data structures and memory allocations minimal
• Data locality is critical
• Reduce tail effects in the work distribution via TBB work stealing
• Pay attention to vectorization reports

- Avoid unaligned accesses and type conversions
- Use prefetching, scatter/gather
- Use ‘const’ and minimize the scope of variables

9

Track Building Performance: Hits Found

Fr
ac

tio
n

of
 T

ra
ck

s

0

0.2

0.4

0.6

0.8

1

Number of Hits
3 4 5 6 7 8 9 10

Cartesian coordinates Cartesian X/polar P

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Adding Complications
Realistic detector geometry

• Endcaps and transition region present new challenges
• Real detectors can have very complex geometries

- Contributes to memory pressure, takes time to navigate

Realistic events
• Real events may have lower occupancy and less uniform distribution than our simplified events

- New issues with even distribution of work

New platforms
• KNL: similar to KNC, but new memory organization & CPU micro-architecture
• GPU: different programming model, how well can our code adapt?

This is work in progress, so the rest of the talk will be more anecdotal

10

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Realistic Geometry
Adding two new geometries:

• “Cylinder with lids” adds endcaps to our idealized geometry
- Use for algorithm development for endcaps and transition region

• CMS geometry using CMS data
- Propagate tracks to average radius of the layer
- Find hits in the compatibility window
- Propagate to each hit location and compute the χ2
- Advantage: work with a simplified geometry
- Disadvantage: have to inflate the search window

Status:
• Barrel and endcaps implemented, still working on transition

region
• Performance has not been tuned or tested

- Doing physics validation first

11

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Compensating for Variable Occupancy
CMS events often have fewer good tracks than the
simulated events in our simple setup

• Lower occupancy causes difficulties keeping the
processors busy and vector units full

Process multiple events at the same time
• Multiple events can fill in gaps in parallelism due to

varying levels of parallelism within an event
• Still scaling limits due to per event data structures

- Tradeoffs due to granularity vs. memory usage of the
binning structure used for finding candidate hits

- At very low occupancy k-d trees can be effective

12

Total Event Loop Time

Sp
ee

du
p

0

10

20

30

40

50

60

70

80

90

Threads
0 15 30 45 60 75 90 105 120

one event at a time 2 events 4 events
8 events 12 events

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

GPU: Choice of Memory Layout

Linear vs. Matriplex
• For multiplying lots of 6x6 matrices, the Matriplex

layout gave better performance than the obvious
alternatives

Use a very large Matriplex-style structure
• GPlex: same interface as Matriplex, but customized

for GPU/CUDA
• Opens the possibility of templating many of the

core Kalman routines to accept either

13

GPU: Finding a Suitable Memory Representation

Block
16 x 36

threadIdx.x

threadIdx.y

blockIdx.x

“Linear” ”Matriplex”
same strategy as the
one used for CPUs’
vector units.

Memory
Array

Threads

12

GPU: Finding a Suitable Memory Representation

Block
16 x 36

threadIdx.x

threadIdx.y

blockIdx.x

“Linear” ”Matriplex”
same strategy as the
one used for CPUs’
vector units.

Memory
Array

Threads

12

GPU: Finding a Suitable Memory Representation

Block
16 x 36

threadIdx.x

threadIdx.y

blockIdx.x

“Linear” ”Matriplex”
same strategy as the
one used for CPUs’
vector units.

Memory
Array

Threads

12

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

GPU: Handling Branching

Moving tracks in global memory
is prohibitively expensive

• For parallelization, one GPU thread
per candidate

• Heap-sort the new candidate list to
select the best new candidates

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Threads

Tracks
Seeds

Candidates

New Candidates

Block Dimension

Sort
Heap

3
3
2
1

Push-pop2
1
3
3

Sort
Heap

8
7
5
3

Push-pop5
3
7
8

Push-pop2
1
3
4

Sort
Heap

∞
9
7
5

Sort
Heap

∞
7
6
4

7
5
9
∞

∞
3
8
∞

6
4
7
∞

2
1
3
7

Use heap-sort to
select the best

new candidates

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

CPU: Track Building Vectorization
How can we improve track building
vectorization on CPUs?

• Most of the non-vector sections are
moving track candidates around in
memory
- Considering copying the GPU approach of

fixed assignments of vector units to seed
candidates

• Finding candidate hits to add to the track,
naively implemented, vectorizes poorly
- Search window varies, number of hits found

per track candidate varies
- Split into three loops, two out of three can

vectorize
- Smarter data structure choices?

15

for track : tracks
 calculate z, φ windows
 find bins in z, φ windows
 for zBin : zBins
 for phiBin : phiBins
 for hit : hits[zBin][phiBin]
 calculate hit-track dphi, dz
 if ok(dz) && ok(dphi) && track.candidates < candMax
 add hit.hitid to track.candidates

Could Vectorize

Vector Problem

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Perspective
The “start simple” plan has worked well for us

• Achieved good parallelization and (mostly) good vectorization on KNC
• Having a baseline for comparison has been a great help as we tackle the complications

Complications are on track
• Realistic geometry and events are nearing completion
• Lessons learned seem to be carrying over well to new architectures
• Progress is being made on the GPU front

Lessons learned on architecture can be valuable on others
• CPU choices of data structures influenced the GPU version
• Some sharing of low level code (but steering logic differs)
• Lessons learned from GPU are starting to be applied back to the CPU version

16

Backup Slides

17

G.Cerati (UCSD)

Kalman Filter Tracking
on Parallel Architectures

CHEP 2015 - Apr. 13, 2015

G.Cerati, M.Tadel, F.Würthwein, A.Yagil (UCSD)
S.Lantz, K.McDermott, D.Riley, P.Wittich (Cornell)

P.Elmer (Princeton)

G. Cerati (UCSD) CHEP2015 - 2015/04/13

Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way

3

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Splitting vector vs. non-vector loops
Overview:

• First loop calculates the search windows;
this trivially vectorizes

• Second loop make a list of hits within the
search windows

• Third loop is reorganized to check every
hit against every track
- the loop over tracks vectorizes

Problems:
• There’s only a benefit if the track

candidates have many candidate hits in
common
- This should be true if the candidate tracks

are mostly from the same seed

18

for track : tracks
 calculate vector of z, φ windows
 find vector of bins in z, φ windows

for track : tracks
 for zBin : zBins
 for phiBin : phiBins
 add z/phi bin to bins

for bin : bins
 for hit : bin.hits
 clear hitmask
 for track : tracks
 calculate hit-track dphi, dz
 hitmask[track] = ok(dz) && ok(dphi)
 for track : tracks
 if hitmask[track] && track.candidates < candMax
 add hit.hitid to track.candidates

