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Test Setup

• Xeon Phi as starting point, no real prejudice on architecture
- but more direct porting of optimizations to Xeon

� in fact we test performance on both
- the name of the game is to keep the many processors occupied and the vector units 

on sync, performing the same calculations and thus minimizing branching points

• Standalone tracking code 
- started with a simplified setup

� Ideal barrel geometry, no material interaction, gaussian hit position smearing
� Particle gun simulation, no interactions/decays

- prepared to increase complexity along the way
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Why Many-Core?

• Instantaneous luminosity of the LHC is 
expected to continue increasing the 
High Luminosity era

• Higher detector occupancy means more 
time spent in event reconstruction

2Why Parallelizing?

• By 2025, the instantaneous luminosity of the LHC 
will increase by a factor of 2.5, transitioning to the 
High Luminosity LHC

• Increase in detector occupancy leads to significant 
strain on read-out, selection, and reconstruction

• Clock speed stopped scaling
• Number of transistors keeps doubling 

every ~18 months
ÎMulti-core architectures

• E.g. Xeon, MIC, GPUs
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• Clock speed has stopped scaling (power 
consumption, heat dissipation, etc.)

• Number of transistors is still increasing
• More cores/chip, more SIMD
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Kalman Filter
Kalman Filter two-step: 

• Produce an estimate of the current state (prediction)
• Update the state with the next measurement

Why use it for tracking: 
• Robust handling of multiple scattering, energy loss, and other material effects
• Widely used in the field
• Demonstrated physics performance

Our goals for Kalman Filter (KF) track building on many-core architectures 
• Make effective use of parallel and vector architectures
• Maintain physics performance
• Preserve consistent systematics across platforms

3
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Track Building Basics
Algorithm (for a single seed): 

• Start with a seed track from 3 or more measurements
- Seed finding is currently out of scope for us 

• Estimate the track state from the seed track
• Propagate the track state to the next detector layer
• Find candidate detector response “hits” near the projected 

intersection point(s) of the track with the detector
• Evaluate the goodness of fit of each hit wrt the track
• Select the best fit track/hit combinations as track candidates
• Update the estimated state of all track candidates with the 

new hit
• Propagate all track candidates to the next layer and iterate

4
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Kalman Filter reconstruction

Figure 2. Left: Basic unit of the Kalman Filter algorithm. At each step, position information
from hits is used to estimate the track parameters and their uncertainties. The red circle
represents the measurement (a hit). The blue point on layer N represents the estimated state
(position and direction) at layer N before taking into account information from hits on that
layer. The yellow point is the updated state at layer N , taking into account all hits from up to
and including layer N . Right: Cartoon representing the two stages of fitting: forward fit and
backward smoothing. For this test we do not perform a smoothing step.
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and position pull plots for the fit. The performance of the fit is under control.

As can be seen in Fig. 2 (right), the track fit consists of the simple repetition of the basic logic
unit for all the pre-determined track hits and therefore it is the easiest case to test. It is divided in
two steps: a forward fit and a backward smoothing stage for optimal performance. For this test,
only forward fit is run. The Kalman Filter requires initial estimation of track parameters to get
started. In our test, the starting state is taken directly from simulation with 100% uncertainty.
As a more realistic option, we also implemented a parabolic fit in the conformal space to define
initial parameters. For the fitting test, the hits are attached to a track “by name” (i.e., no
pattern recognition is performed) and a Kalman Filter fitting stage is performed. Figure 3
shows the p

T

and position pulls for the resulting fit with Gaussian distributions consistent with

seed

track fittrack building
The Kalman Filter track reconstruction 

searches for hits along the track direction, 
with a search window that shrinks when 

more measurements are added.

The track reconstruction process can be 
divided in 3 steps: track seeding (initial 

track prototype), building (hit finding) and 
fitting (final parameter estimate).

The track fit is the bare repetition of the 
basic unit, ideal as a starting point.

Track building is the most time 
consuming part - it involves branching 
points of variable size, with the simplest 

version degenerating into the track fit case.

Track seeding not fully implemented yet, 
for now seeds are defined using MC info.
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Track Building Challenges
Good efficiency requires considering multiple hypotheses 

• In a dense detector, many tracks will find hit candidates that are the best local fit but 
lead to a globally poor fit

• Acceptable efficiency typically requires considering ~6 or more track hypotheses for 
every seed depending on detector occupancy

Track building involves multiple branch points 
• Selecting candidate hits at each layer
• Evaluating a variable number of track candidate/hit candidate combinations
• Selecting the best combinations for propagation to the next layer
• Many seeds turn out to be false leads, dying out after a few layers

Branch points lead to irregular work loads and memory access patterns
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Our Approach
Start simple: 

• Knights Corner (KNC) Xeon PHI and Sandy Bridge (SNB) Xeon
• Regular cylindrical geometry
• Lots of tracks per event, uniformly distributed in η, simplifying work distribution
• Tracks seeds from Monte Carlo “truth”
• Track fitting (all hits known) as a warm up exercise before track building
• Develop measurement and validation tools, techniques and intuition

Then add complications—this is where we are now: 
• Realistic geometry with endcaps and transition regions
• Realistic events from CMS simulation
• Seeds from CMS track finding
• Additional platforms: Knights Landing, GPGPU

6
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Data structure: Matriplex
“Matrix-major” matrix 
representation designed to fill a 
vector unit with n small matrices 
operated on in synch 

Use vector-unit width on Xeons 
• With or without intrinsics
• Shorter vector sizes w/o intrinsics
• For GPUs, use the same layout with 

very large vector width

Interface template common to 
Xeon and GPU versions

7
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Results from Starting Simple
Results are from a KNC Xeon Phi 7120P 

• 61 cores, but needs 122 threads to utilize all clock 
cycles

• AVX-512 vector width gives 16 single-precision floats
• SNB Xeon results generally better

- But not as interesting 

Parallelization: 
• Matriplexes are assigned to threads via Threading 

Building Blocks (TBB) tasks
• Near ideal up to the number of physical cores, some 

resource contention past that

Vectorization: 
• Track fitting achieves about half the ideal vector speedup
• Track building vectorization still needs work

8
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Lessons from the Simple Version
Physics performance lessons: 

• Coordinate system choice matters
- We eventually adopted spatial Cartesian, polar momentum 
- Error matrix is more complex 
- Better prediction performance speeds up track finding 

Computing performance: 
• Keep data structures and memory allocations minimal
• Data locality is critical
• Reduce tail effects in the work distribution via TBB work stealing
• Pay attention to vectorization reports

- Avoid unaligned accesses and type conversions 
- Use prefetching, scatter/gather 
- Use ‘const’ and minimize the scope of variables
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Adding Complications
Realistic detector geometry 

• Endcaps and transition region present new challenges
• Real detectors can have very complex geometries

- Contributes to memory pressure, takes time to navigate 

Realistic events 
• Real events may have lower occupancy and less uniform distribution than our simplified events

- New issues with even distribution of work 

New platforms 
• KNL: similar to KNC, but new memory organization & CPU micro-architecture
• GPU: different programming model, how well can our code adapt?

This is work in progress, so the rest of  the talk will be more anecdotal
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Realistic Geometry
Adding two new geometries: 

• “Cylinder with lids” adds endcaps to our idealized geometry
- Use for algorithm development for endcaps and transition region 

• CMS geometry using CMS data
- Propagate tracks to average radius of the layer 
- Find hits in the compatibility window 
- Propagate to each hit location and compute the χ2
- Advantage: work with a simplified geometry 
- Disadvantage: have to inflate the search window 

Status: 
• Barrel and endcaps implemented, still working on transition 

region
• Performance has not been tuned or tested

- Doing physics validation first

11
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Compensating for Variable Occupancy
CMS events often have fewer good tracks than the 
simulated events in our simple setup 

• Lower occupancy causes difficulties keeping the 
processors busy and vector units full

Process multiple events at the same time 
• Multiple events can fill in gaps in parallelism due to 

varying levels of parallelism within an event
• Still scaling limits due to per event data structures

- Tradeoffs due to granularity vs. memory usage of the 
binning structure used for finding candidate hits 

- At very low occupancy k-d trees can be effective

12
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GPU: Choice of Memory Layout

Linear vs. Matriplex 
• For multiplying lots of 6x6 matrices, the Matriplex 

layout gave better performance than the obvious 
alternatives

Use a very large Matriplex-style structure 
• GPlex: same interface as Matriplex, but customized 

for GPU/CUDA
• Opens the possibility of templating many of the 

core Kalman routines to accept either

13
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GPU: Handling Branching

Moving tracks in global memory 
is prohibitively expensive 

• For parallelization, one GPU thread 
per candidate

• Heap-sort the new candidate list to 
select the best new candidates

14
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CPU: Track Building Vectorization
How can we improve track building 
vectorization on CPUs? 

• Most of the non-vector sections are 
moving track candidates around in 
memory
- Considering copying the GPU approach of 

fixed assignments of vector units to seed 
candidates 

• Finding candidate hits to add to the track, 
naively implemented, vectorizes poorly
- Search window varies, number of hits found 

per track candidate varies 
- Split into three loops, two out of three can 

vectorize 
- Smarter data structure choices?
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for track : tracks 
  calculate z, φ windows 
  find bins in z, φ windows 
  for zBin : zBins 
    for phiBin : phiBins 
      for hit : hits[zBin][phiBin] 
        calculate hit-track dphi, dz 
        if  ok(dz) && ok(dphi) && track.candidates < candMax 
          add hit.hitid to track.candidates 

Could Vectorize

Vector Problem
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Perspective
The “start simple” plan has worked well for us 

• Achieved good parallelization and (mostly) good vectorization on KNC
• Having a baseline for comparison has been a great help as we tackle the complications

Complications are on track 
• Realistic geometry and events are nearing completion
• Lessons learned seem to be carrying over well to new architectures
• Progress is being made on the GPU front

Lessons learned on architecture can be valuable on others 
• CPU choices of data structures influenced the GPU version
• Some sharing of low level code (but steering logic differs)
• Lessons learned from GPU are starting to be applied back to the CPU version
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Splitting vector vs. non-vector loops
Overview: 

• First loop calculates the search windows; 
this trivially vectorizes

• Second loop make a list of hits within the 
search windows

• Third loop is reorganized to check every 
hit against every track
- the loop over tracks vectorizes 

Problems: 
• There’s only a benefit if the track 

candidates have many candidate hits in 
common
- This should be true if the candidate tracks 

are mostly from the same seed
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for track : tracks 
  calculate vector of  z, φ windows 
  find vector of  bins in z, φ windows 

for track : tracks 
  for zBin : zBins 
    for phiBin : phiBins 
      add z/phi bin to bins 

for bin : bins 
    for hit : bin.hits 
      clear hitmask 
      for track : tracks 
        calculate hit-track dphi, dz 
        hitmask[track] = ok(dz) && ok(dphi) 
      for track : tracks 
        if hitmask[track] && track.candidates < candMax 
          add hit.hitid to track.candidates


