‘™ PRINCETON
& UNIVERSITY

2= Fermilab

an Diego ([) comerumen:
\o q / 5@ A

Parallelized Kalman-Filter-Based Reconstruction
of Particle Tracks on Many-Core Architectures

ACAT2017

G. Cerati*, P Elmer?, S. Krutelyov', S. Lantz?, M. Lefebvre’, M. Masciovecchio',
K. McDermott?, D. Riley?, M. Tadel', P Wittich?, F Wiirthwein', A.Yagil’

|. University of California — San Diego

2. Cornell University

3. Princeton University

4. Fermi National Accelerator Laboratory

CMS

Why Many-Core?

~ CMS Simulation, {s = 13 TeV, tt + PU, BX=25ns

(®))
o

— —=— Full Reco —e— Track Reco

PU140

Time/Event [a.u.]

o)
[o

40—
30—
20—

10

|- 6
Luminosity [10** cm2 s

» Instantaneous luminosity of the LHC is
expected to continue increasing the
High Luminosity era

* Higher detector occupancy means more
time spent in event reconstruction

10,000,000 -
5 < Num Transistors (in Thousands)
1,000,000 e Relative Performance 5.5
1| &Clock Speed (MHz)
100,000 = Power Typ (W) -
; O NumCores/Chip

10,000 -

1,000 -
100 -

10 -

1985 1990 1995 2000 2005 2010
Year of Introduction

Clock speed has stopped scaling (power
consumption, heat dissipation, etc.)

* Number of transistors is still increasing
* More cores/chip, more SIMD

D. Riley (Cornell) — ACAT2017 — 2017-08-21

CMS

Kalman Filter

Kalman Filter two-step:

* Produce an estimate of the current state (prediction)
- Update the state with the next measurement

Why use it tor tracking:

* Robust handling of multiple scattering, energy loss, and other material effects
* Widely used in the field
* Demonstrated physics performance

Our goals for Kalman Filter (KF) track building on many-core architectures

- Make effective use of parallel and vector architectures
- Maintain physics performance
* Preserve consistent systematics across platforms

CMS

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Track Building Basics

Algorlthm (for a single seed):

track building

Start with a seed track from 3 or more measurements
Seed finding is currently out of scope for us

- Estimate the track state from the seed track
- Propagate the track state to the next detector layer

* Find candidate detector response “hits’”’ near the projected
intersection point(s) of the track with the detector

- Evaluate the goodness of fit of each hit wrt the track
« Select the best fit track/hit combinations as track candidates

- Update the estimated state of all track candidates with the
new hit

seed

 Propagate all track candidates to the next layer and iterate

CMS

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Track Building Challenges

Good efticiency requires considering multiple hypotheses

* In a dense detector, many tracks will find hit candidates that are the best local fit but
lead to a globally poor fit

- Acceptable efficiency typically requires considering ~6 or more track hypotheses for
every seed depending on detector occupancy

Track building involves multiple branch points
- Selecting candidate hits at each layer

» Evaluating a variable number of track candidate/hit candidate combinations
- Selecting the best combinations for propagation to the next layer
- Many seeds turn out to be false leads, dying out after a few layers

Branch points lead to irregular work loads and memory access patterns

D. Riley (Cornell) — ACAT2017 — 2017-08-21 S

Our Approach

Start simple:

* Knights Corner (KNC) Xeon PHI and Sandy Bridge (SNB) Xeon
* Regular cylindrical geometry

* Lots of tracks per event, uniformly distributed in 1, simplifying work distribution
» Tracks seeds from Monte Carlo “truth”

- Track fitting (all hits known) as a warm up exercise before track building

* Develop measurement and validation tools, techniques and intuition

Then add complications—this 1s where we are now:

* Realistic geometry with endcaps and transition regions
- Realistic events from CMS simulation

* Seeds from CMS track finding

- Additional platforms: Knights Landing, GPGPU

CMS

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Data structure: Matriplex

“Matrix-majot’” matrix
representation designed to fill a
vector unit with n small matrices
operated on in synch

Use vector-unit width on Xeons

* With or without intrinsics
« Shorter vector sizes w/o intrinsics

* For GPUs, use the same layout with
very large vector width

Intertace template common to
Xeon and GPU versions

vector unit

M!(1,1)

M'(1,2)

M'(1,N)

M'@2,1)

M'(N,N)

M (1,1)

M™1(1,2

M2(1,1)

M2(1,2)

M2(1,N)

M2(2,1)

M3(N,N)

M™2(],1)

M2 (1,2

<«— fast memory direction

M2(1,1)

M2(1,2)

D. Riley (Cornell) — ACAT2017 — 2017-08-21

CMS

Results from Starting Simple

Results are from a KNNC Xeon Phi 7120P

* 61| cores, but needs |22 threads to utilize all clock “

180

cycles 150

* AVX-512 vector width gives |6 single-precision floats g 120
+ SNB Xeon results generally better 3 ZZ
But not as interesting 30

Parallelization:

+ Matriplexes are assigned to threads via Threading
Building Blocks (TBB) tasks

* Near ideal up to the number of physical cores, some 14
resource contention past that

16

-t
o

Speedup

Vectorization:

o NN B O O

» Track fitting achieves about half the ideal vector speedup
» Track building vectorization still needs work

KNC Parallel Speedup

210

Vector Width

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Fitting Building Ideal
30 60 90 120 150 180
Number of threads
KNC Vector Speedup
Fitting Building - deal
2 4 6 8 10 12 14 16

CMS

Lessons from the Simple Version

Track Building Performance: Hits Found

Physics performance lessons: 1

° C OO rd i n ate Syste m C h O i C e m atte rs Cartesian coordinates Cartesian X/polar P

0.8

We eventually adopted spatial Cartesian, polar momentum
—rror matrix 1Is more complex

Better prediction performance speeds up track finding

o
o

Fraction of Tracks

o
IS

Computing pertformance:

 Keep data structures and memory allocations minimal

0

3 4 5 6 7 8 9 10

* Data locality is critical Number of Hits

* Reduce tail effects in the work distribution via TBB work stealing

- Pay attention to vectorization reports

Avoid unaligned accesses and type conversions
Jse prefetching, scatter/gather
Jse ‘const’ and minimize the scope of variables

CMS

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Adding Complications

Realistic detector geometry

 Endcaps and transition region present new challenges

* Real detectors can have very complex geometries
Contributes to memory pressure, takes time to navigate

Realistic events

* Real events may have lower occupancy and less uniform distribution than our simplified events
New issues with even distribution of work

New plattorms

» KNL: similar to KNC, but new memory organization & CPU micro-architecture
- GPU: different programming model, how well can our code adapt?

This 1s work 1n progress, so the rest of the talk will be more anecdotal

D. Riley (Cornell) — ACAT2017 — 2017-08-21

10

CMS

11

Realistic Geometry

Adding two new geomettries: f— .

» “Cylinder with lids” adds endcaps to our idealized geometry oo

Use for algorithm development for endcaps and transition region oo ::08

+ CMS geometry using CMS data —— 8.

Propagate tracks to average radius of the layer SN -

Find hits in the compatibility window
Propagate to each hit location and compute the x? ISWRARLA R AR IO
Advantage: work with a simplitied geometry S 4Oh b::i azrso o

Disadvantage: have to inflate the search window a .00

Status:

— s i

» Barrel and endcaps implemented, still working on transition " — oo

region ok i oo

* Performance has not been tuned or tested & I
Doing physics validation first B NN Rl

CMS

D. Riley (Cornell) — ACAT2017 — 2017-08-21

12

Compensating for Variable Occupancy

CMS events often have tewer good tracks than the

stimulated events in our stimple setup) Total Event Loop Time
° Lower OCCUPanC)’ causes dlfﬁCUItleS |(eep|ng the ol one event at a time 2 events - 4 events
processors busy and vector units full 70 [——
60
3 50 ///
Process multiple events at the same time & / ~ _ -
30
* Multiple events can fill in gaps in parallelism due to 20 ///
varying levels of parallelism within an event 10 7//
0
- Still scaling limits due to per event data structures ©o®" W s T 0 s

Threads
Tradeoffs due to granularity vs. memory usage of the

binning structure used for finding candidate hits
At very low occupancy k-d trees can be etfective

CMS

D. Riley (Cornell) — ACAT2017 — 2017-08-21

13

GPU: Choice of Memory Layout

Memory muw. . . smowos- EEE--- N
Array
“Linear”
Linear vs. Matriplex N
* For multiplying lots of 6x6 matrices, the Matriplex - — — _— -
layout gave better performance than the obvious "Matriplex”
alte rnatives same st:ja]’iegy(/:sztl:ne
vector units.
Use a very large Matriplex-style structure T I
* GPlex: same interface as Matriplex, but customized
for GPU/CUDA 7

100

- Opens the possibility of templating many of the
core Kalman routines to accept either

oo
=]

Elapsed time (ms)

ch
=

e—a sgemm_mplex_shared
=—a sgemm_cublas_batched
s=—e sgemm_linear shared
e=—o sgemm_mplex_shared tex

40

201

0 - - -
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Mumber of 6*6 matrix multiplications leb

CMS

D. Riley (Cornell) — ACAT2017 — 2017-08-21

14

GPU: Handling Branching

Block Dimension

Threads n---.-
||

Moving tracks in global memory v [FIFEIEIE ‘n'nﬂ Pnﬂ
is prohibitively expensive e

* For parallelization, one GPU thread

per candidate {'fq'fq'fq'

* Heap-sort the new candidate list to Use heap-sort to i i
. select the best
select the best new candidates

new candidates :“ ’/ :“ ’/
pppppppppppppppp
\ ‘ Heapi
/ rt
New Candidates :i‘
Push-pop

D. Riley (Cornell) — ACAT2017 — 2017-08-21

15

CPU: Track Building Vectorization

How can we improve track building
vectorization on CPUs?

 Most of the non-vector sections are
moving track candidates around in |
calculate z, (P windows

memory e .
. . find bins in z, P windows
Considering copying the GPU approach of forzBin : zBins

for track : tracks

Could Vectorize

fixed assignments of vector units to seea for phiBin : phiBins Vector Problem
candidates for hit : hits[zBin][phiBin]|
» Finding candidate hits to add to the track, calculate hit-track dphi, dz

it ok(dz) && ok(dphi) && track.candidates < candMax

naively implemented, vectorizes poorly ~dd hit.hitid o track.candidates

Search window varies, number of hits found
per track candidate varies

Split into three loops, two out of three can
vectorize

Smarter data structure choices?

CMS

D. Riley (Cornell) — ACAT2017 — 2017-08-21

Perspective

The “start simple” plan has worked well for us

* Achieved good parallelization and (mostly) good vectorization on KNC
 Having a baseline for comparison has been a great help as we tackle the complications

Complications are on track

- Realistic geometry and events are nearing completion
 Lessons learned seem to be carrying over well to new architectures
* Progress is being made on the GPU front

Lessons learned on architecture can be valuable on others

» CPU choices of data structures influenced the GPU version
- Some sharing of low level code (but steering logic differs)
* Lessons learned from GPU are starting to be applied back to the CPU version

D. Riley (Cornell) — ACAT2017 — 2017-08-21

16

CMS

Backup Slides

Splitting vector vs. non-vector loops

Overview:

+ First loop calculates the search windows; /77 track : tracks

: o : calculate vector of z, (P windows
this trivially vectorizes P

. . o find vector of bins in z, P windows
 Second loop make a list of hits within the

search windows for track : tracks
for zBin : zBins
for phiBin : phiBins
add z/phi bin to bins

- Third loop is reorganized to check every
hit against every track

the loop over tracks vectorizes
for bin : bins

18

for hit : bin.hits
Problems: clear hitmask
- There’s only a benefit if the track Jor track : tracks .
. . o calculate hit-track dphi, dz
candidates have many candidate hits in hitmask[track] = ok(dz) && ok(dphi)
common for track : tracks
This should be true if the candidate tracks /f hitmask|track] && track.candidates < candMax
are mostly from the same seed add hit.hitid to track.candidates

D. Riley (Cornell) — ACAT2017 — 2017-08-21

CMS

