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Introduction
Usage of Monte Carlo-generated sample is fairly common approach in the High Energy Physics. 

However, not all variables can be simulated accurately enough, so the discrepancies may lead either to
a) expensive simulation of both signal and background, or to..
b) ML models trained on simulated sample that overfits to the simulated artifacts and work poorly on 
the real data.

In the research we propose a technique to train neural networks that are safe to train on mixture of 
simulated and real data.
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The network architecture has a dense 2(3*)-branch structure (Figure 3) and consists from 
following parts: 

1. Feature extractor – is responsible for feature generation
2. Label predictor – is responsible for the target prediction (signal/background 

discrimination)
3. Domain classifier – is responsible for cross-domain adaptation and prevents the 

network from overfitting to MC domain
4*. Mass predictor - helps to eliminate the correlation between classifier predictions and 

reconstructed mass of the decay

Domain adaptation

Problem

Results

Model
Metric

Mass-aware	
Classifier	

Data	Doping Domain-
adaptation

AUC	(truncated) 0.999 0.9744 0.979

KS	(	< 0.09) 0.18 0.087 0.06	

CvM ( <	0.002) 0.0008 0.0011 0.0008

In the research we use τ→	3µ	events as signal (analysis) channel that has been published at the 
Data Science challenge on kaggle.com [3]. The challenge is three-fold:

1) Since the classifier is trained on a mixture of simulated signal and real data background, it is 
possible to reach a high performance by exploiting features that are not perfectly modeled in the 
simulation. We require that the classifier should not have a large discrepancy when applied to real 
and simulated data. To verify this, we use a control channel, Ds →	φπ, that has a similar topology as 
the signal decay, τ	→	3µ (analysis channel). Ds →	φπ is a well-known decay, as it happens much 
more frequently. So the goal is to train a classifier able to separate A from B but not C from D
(Figure 1.),. A Kolmogorov-Smirnov (KS) test is used to evaluate the differences between the 
classifier distribution on each sample. In our problem KS is calculated between prediction’s 
distributions for real and simulated data for Ds →	φπ channel. The KS-value of the test should be 
less than 0.09.

2) The classifier output should not be correlated with reconstructed mass feature, i.e. it’s output 
distribution should not sculpt artificial bumps that could be interpreted as a (false) signal. To test the 
flatness we’ve used Cramer-von Mises (CvM) test that gives the uniformity of the distribution [4].

3) The quality of signal discrimination should be as much as possible. The evaluation metric for 
signal discrimination is Weighted Area Under the ROC Curve (truncated AUC) [3]

Data Doping (baseline)
In the research we have selected Data Doping [2] as a baseline. The idea is to “dope” the 

training set with a small number of Monte-Carlo events from the control channel (C), but labeled 
as background. The optimal number of doping events was taken from [2].

Conclusion

In the research following models were compared: Baseline (label predictor from Figure 3
without Domain Adaptation), Domain Adaptation (our approach), Data Doping. Models were 
tested on 85000+ events of signal (τ	→	3µ) and background.

The tests showed that this architecture is a robust mechanism for choosing tradeoff between 
discrimination power and overfitting, moreover, it also improves the quality of the baseline 
prediction. Thus, this approach allowed us to train deep learning models without reducing the 
quality, which allow us to distinguish physical parameters, but do not allow us to distinguish 
simulated events from real ones. 

As shown in the table below our method provides the best solution for signal detection 
problem (𝜏 → 3𝜇). 

In this research we propose a technique for training neural networks on mixture of MC-simulated signal and real background sample that 
allows to avoiding overfitting to simulated artifacts. The technique is based on cross-domain adaptation approach with gradient reversal [1]. 
The method shows significantly better results than Data Doping [2]. Moreover, gradient reversal gives more flexibility and helps to ensure 
flatness of the network output wrt certain variables (e.g. nuisance parameters) as well.

Figure 1. Training on the mixture of simulated (MC) and real data

Training dataset (Analysis channel) consists of 67000+ events of signal (τ→	3µ) and 
background events. Control channel consists of 71000+ events of signal (Ds	→	φπ) and 
background. All events are described by 46 features.

The architecture above was implemented on Python 2.7 using Lasagne (ver. 2.1)
framework. We tuned the following parameters to obtain stable results: 

• learning rates ratio between branches (learning_rate_multiplier);
• batch sizes ratio for branches. The best observed values were 1000 and 300 for 

Label predictor and Domain classifier respectively
• number of batches per epoch ratio. The best observed ratio between batches number 

was 6:1 for Label predictor and Domain classifier respectively
The model was trained for 20 epochs with RMSProp optimizer.
KS-value was eliminated by increasing of Domain classifier’s learning rate, increasing 

corresponding batch size and batches frequency. But too small values of KS makes CvM
values higher and AUC metric smaller. Figure 4 represents such dependency from one of such 
parameters. So the goal was to find balance between KS, CvM and AUC using parameters 
described above

Experiment

Figure 2. illustration of the CvM correlation test [4]. On the left side there is no correlation with mass 
(small CvM values). On the right side model’s predictions are highly correlated with mass (high 
CvM values)
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Figure 3. Domain Adaptation

Figure 4. Metrics dependency from domain classifier’s learning_rate_multiplier

The method proposed is shown to work well on a typical particle physics analysis 
problem:
- Remarkable classification quality;
- Robustness to MC / Real data mixture;
- Uniformity of the output wrt chosen (mass or nuisance parameter) feature
- Tradeoff between discrimination power and overfitting tuned (Figure 4)

* - Mass predictor part (branch) wasn’t tested in this research and our architecture was tested 
without this part. The Figure 3 was draws without this part. Theoretically it was designed as 
additional branch as domain classifier, working along the same principle.


