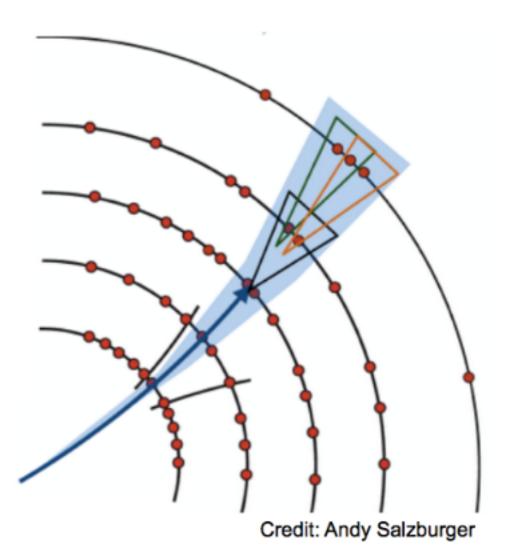
Fermilab DUS. DEPARTMENT OF Office of Science

The HEP.TrkX Project: Deep Learning for Particle Tracking

Aristeidis Tsaris, for the HEP.TrkX Collaboration ACAT 2017 21-25 August 2017 University of Washington, Seattle

Tracking at the LHC

- LHC particle tracking algorithms have seen great success in Runs I and II. In a nutshell:
 - Track seeding: using combinatorial search
 - Track building: using combinatorial Kalman Filter (is the most time consuming part)
 - Track fitting: final parameter estimation



Tracking at the HL-LHC

- The High-Luminosity LHC will increase the number of charged particles and the detector occupancy
 - Will increase the collisions per crossing up to 200
 - Traditional tracking algorithms scale at least quadratically with increasing detector occupancy
 - Tracking algorithms will need to run faster and in parallel

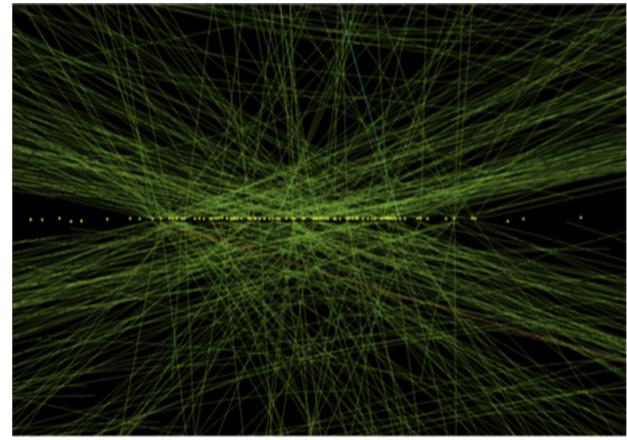


Image: CMS

Some Deep Learning Inspirations

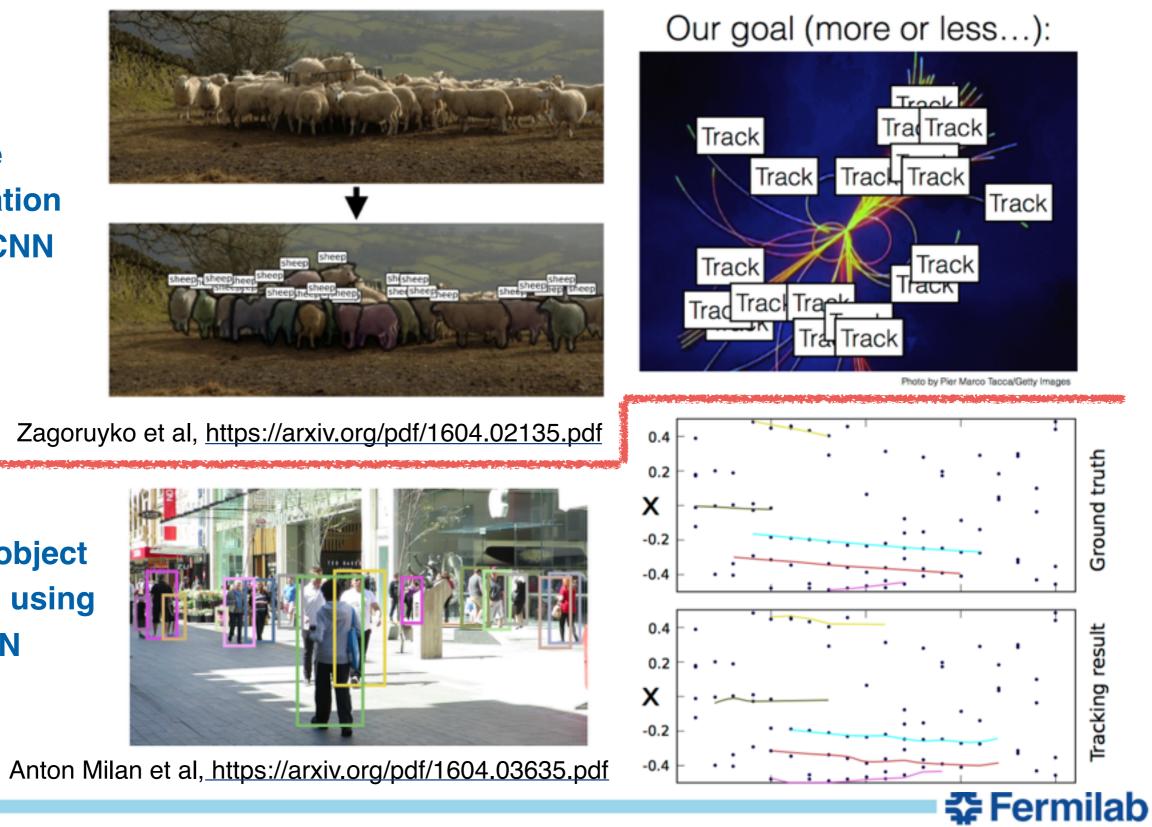


Image Segmentation using R-CNN

> Online object tracking using RNN

The HEP.TrkX Project

- Pilot project funded by DOE ASCR and COMP HEP
- Part of HEP CCE
- Our collaboration:
 - LBL: Steve Farrell, Mayur Mudigonda, Prabhat, Paolo Calafiura, Julien Esseiva
 - Caltech: Dustin Anderson, Jean-Roch Vlimant, Josh Bendavid, Maria Spiropoulou, Stephan Zheng
 - FNAL: Me, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray, Panagiotis Spentzouris, Daniel Zurawski, Keshav Kapoor
- Goals:
 - Explore and develop new tracking algorithms based on modern ML techniques
 - Demonstrate a scalable algorithm with the potential to reconstruct tracks in the HL-LHC conditions

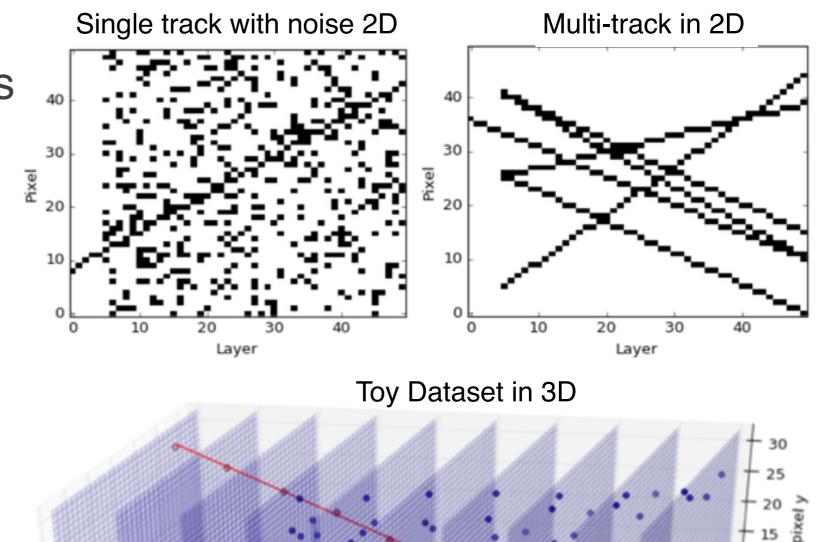
Fermilab

Possible Applications in Tracking

- Seed finding: improve the scaling of current algorithms
- Hit Clustering and building tracks: replace Kalman Filter with a better/faster iterative algorithm
- Track fitting: use RNN for track parameter estimation
- End to end method: cluster hits directly into tracks or produce values for track parameters

Toy Datasets

- Most of the development so far has been done in toy datasets
- Straight line tracks
- No missing hits
- Random background tracks and or uniform noise



1

2

з

detector layer

8

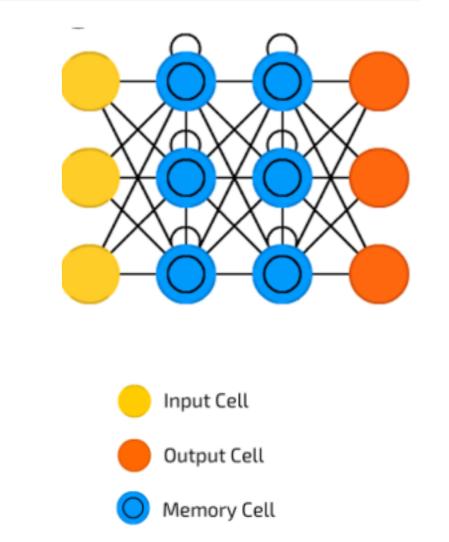
🛟 Fermilab

7

6

Long-Short-Term Memory (LSTM)

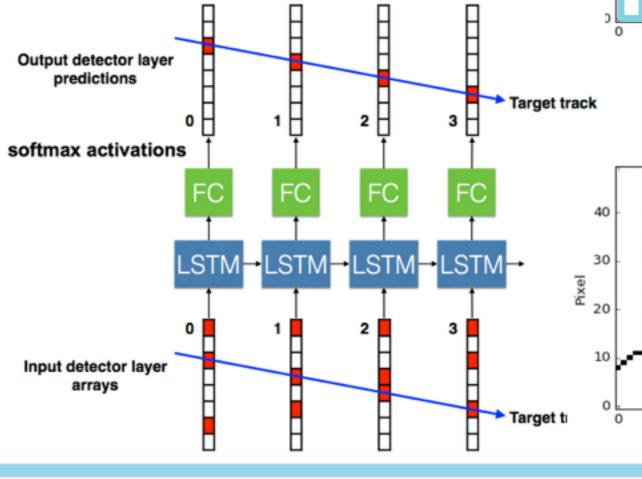
- LSTM are recurrent neural networks that model long term dependencies in sequence data by carrying memory
 - Produce a sequence of outputs
 - Could be a better alternative to the combinatorial scaling problem in KF algorithms
 - Find multi tracks at once

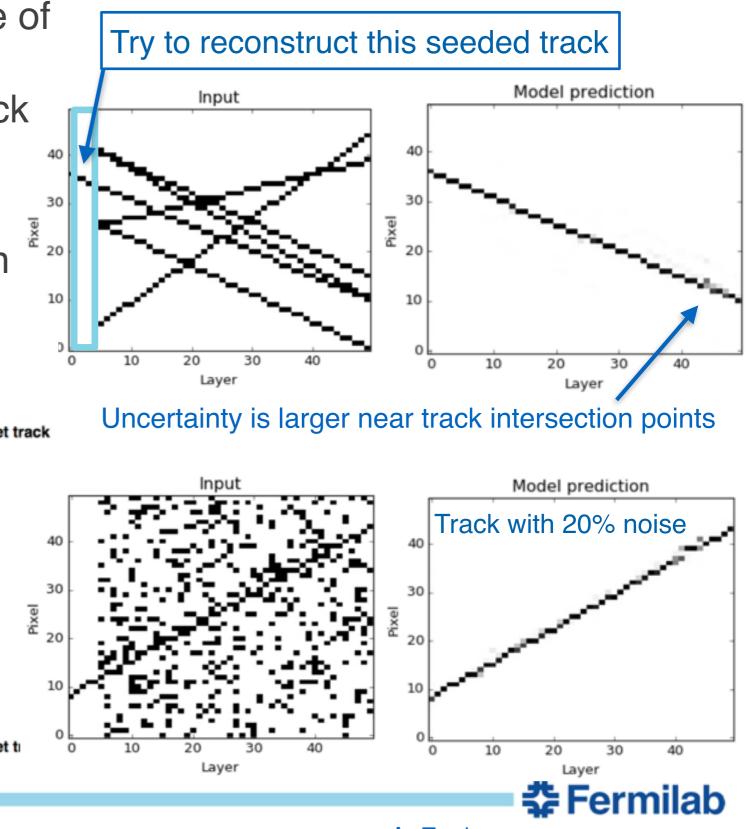


http://www.asimovinstitute.org/neural-network-zoo/

Hit Classification with LSTM in 2D

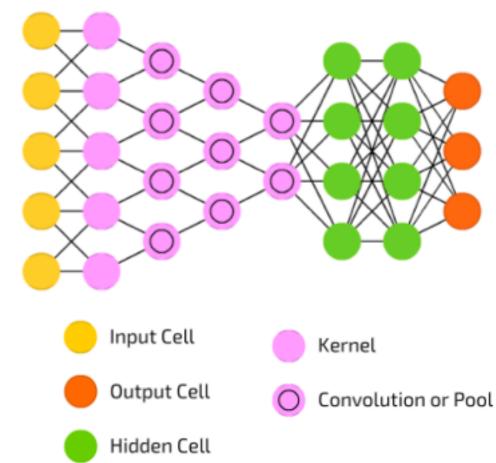
- At each step it considers a slice of the detector and outputs a probabilistic estimate of the track hit location in the current slice
- The LSTM memory state propagates relevant information from layer to layer



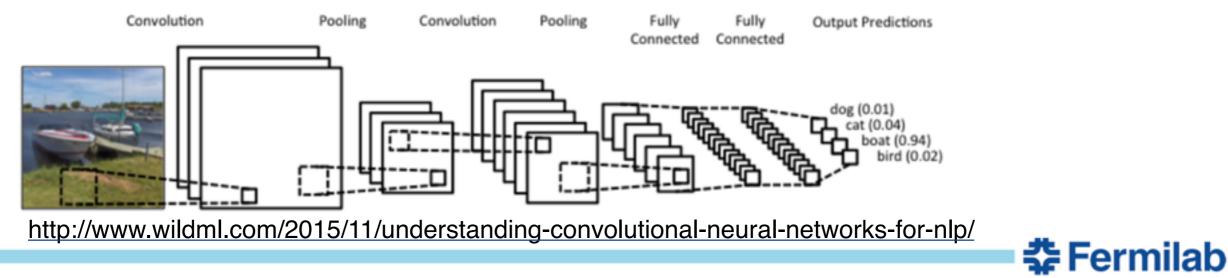


Convolutional Neural Networks (CNN)

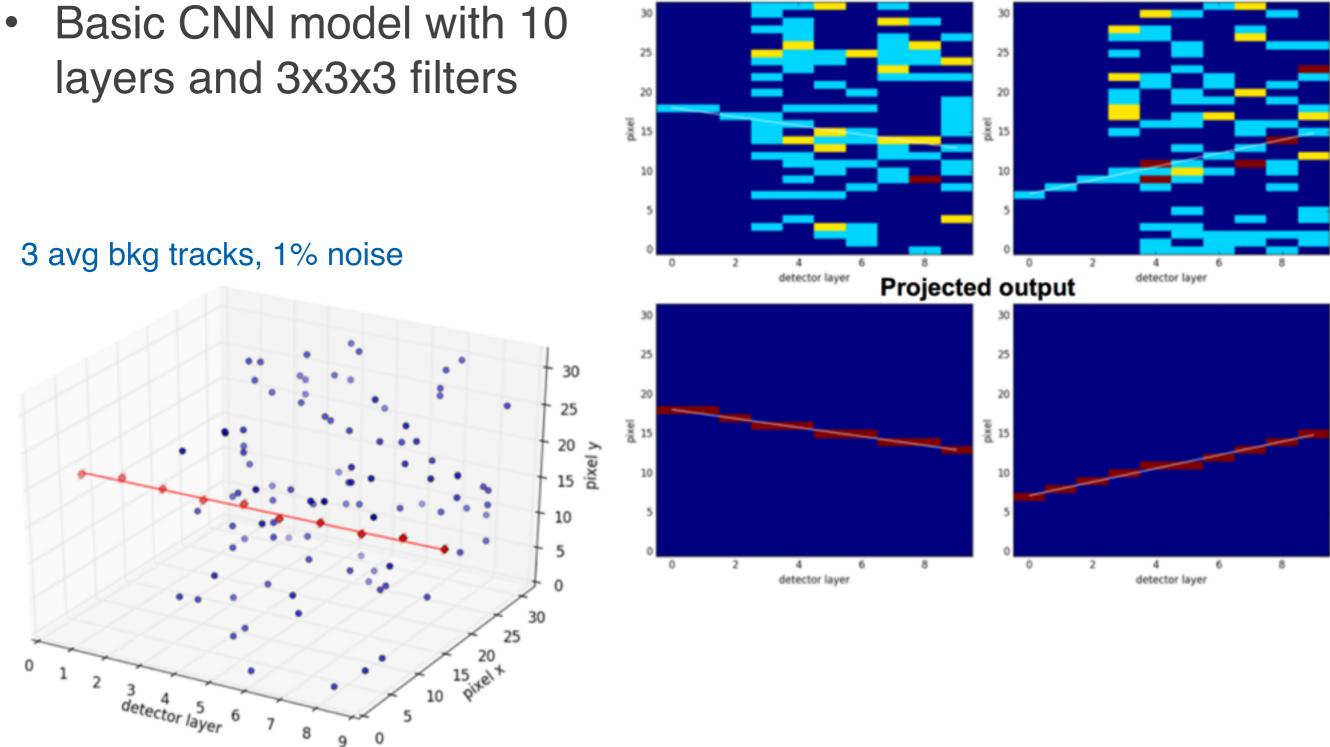
- CNNs have great success in image classification, can be used as track finders:
 - Treat track finding as an image recognition problem
 - Early layers look for track stubs
 - Later layers connect stubs together to build tracks
 - Learn abstract features of the data that can be used to extract track parameters or classify hits



http://www.asimovinstitute.org/neural-network-zoo/



Hit Classification with CNN in 3D



¹¹ ACAT 2017, Seattle, WA, USA

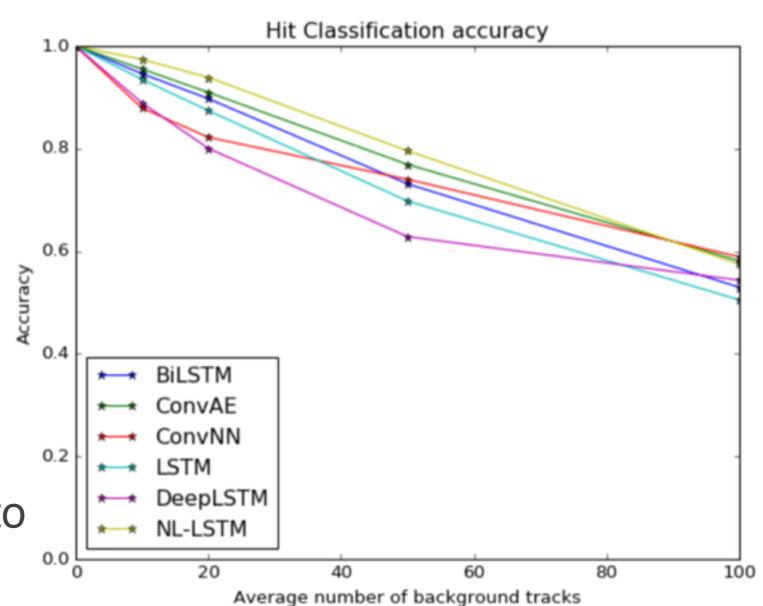
A. Tsaris

🛟 Fermilab

Projected input

Architectures Comparison for Hit Classification in 3D

- Deep LSTM: more fully connected layers
- Bi-directional LSTM: run forward and backward simultaneously
- Next-layer LSTM: prediction of the hit in the next detector layer
- Convolutional autoencoder: alternative to LSTM for layer by layer prediction



A. Tsaris

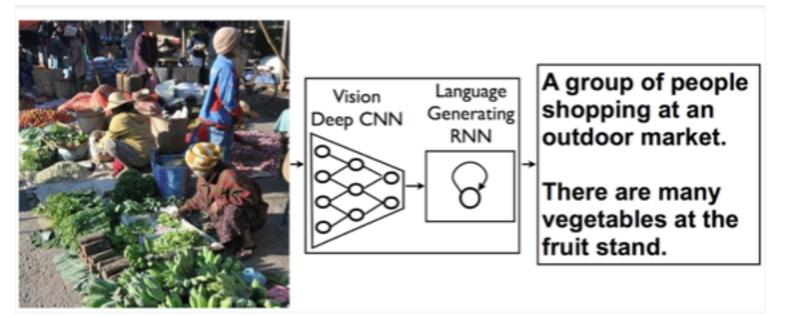
🚰 Fermilab

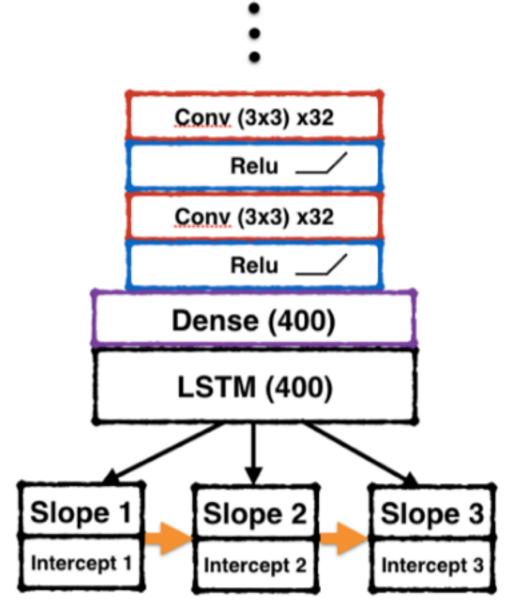
End to End Approach for Predicting Track Parameters

Target directly on parameter prediction Conv (3x3) x8 (slope & intercept in this case) Relu Conv (3x3) x8 Example single track with large noise Relu Max-Pooling 2x2 Conv (3x3) x16 **Projected output** Input Relu Conv (3x3) x16 40 40 Relu 30 30 Pixel Pixel **Dense (20)** 20 20 10 10 Slope Intercept 10 20 10 20 30 40 30 0 Layer Layer 🛟 Fermilab

End to End Approach for Predicting Track Parameters

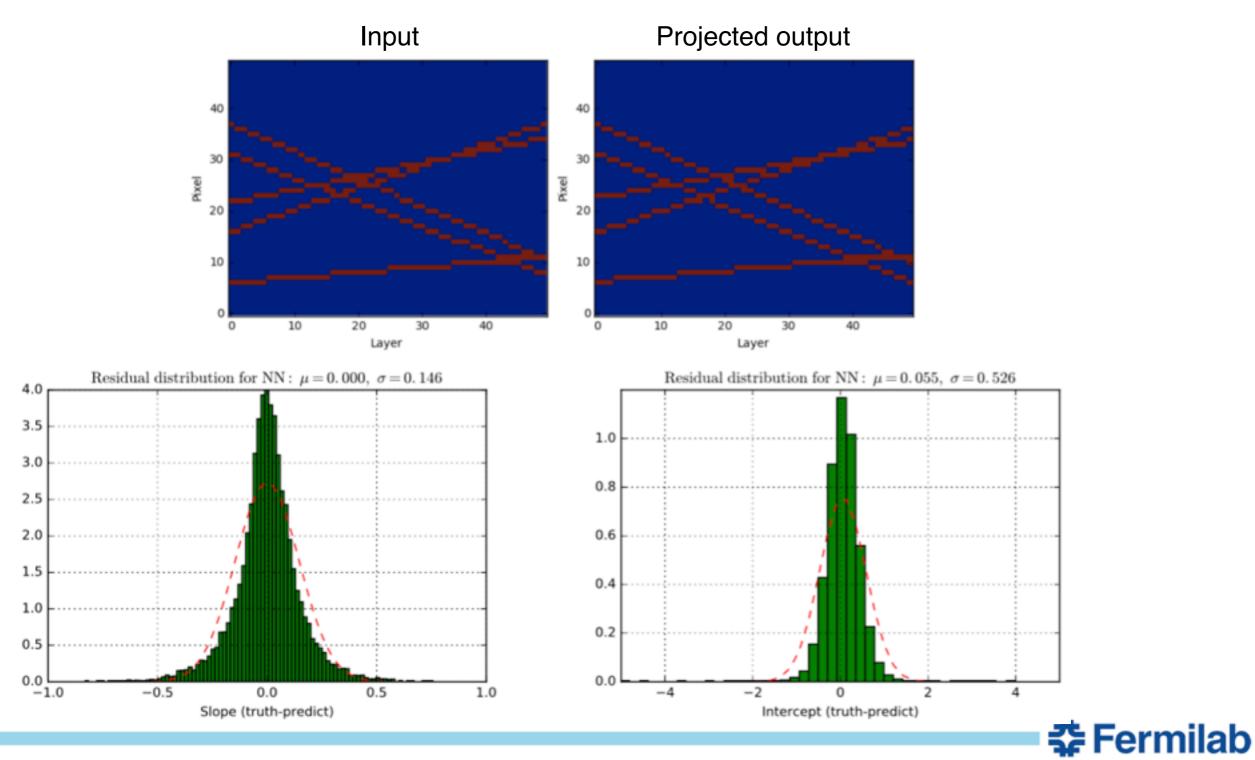
- For many tracks per event add LSTM network at the end
- The memory cell updates to focus on a new track in the image





End to End Approach for Predicting Track Parameters

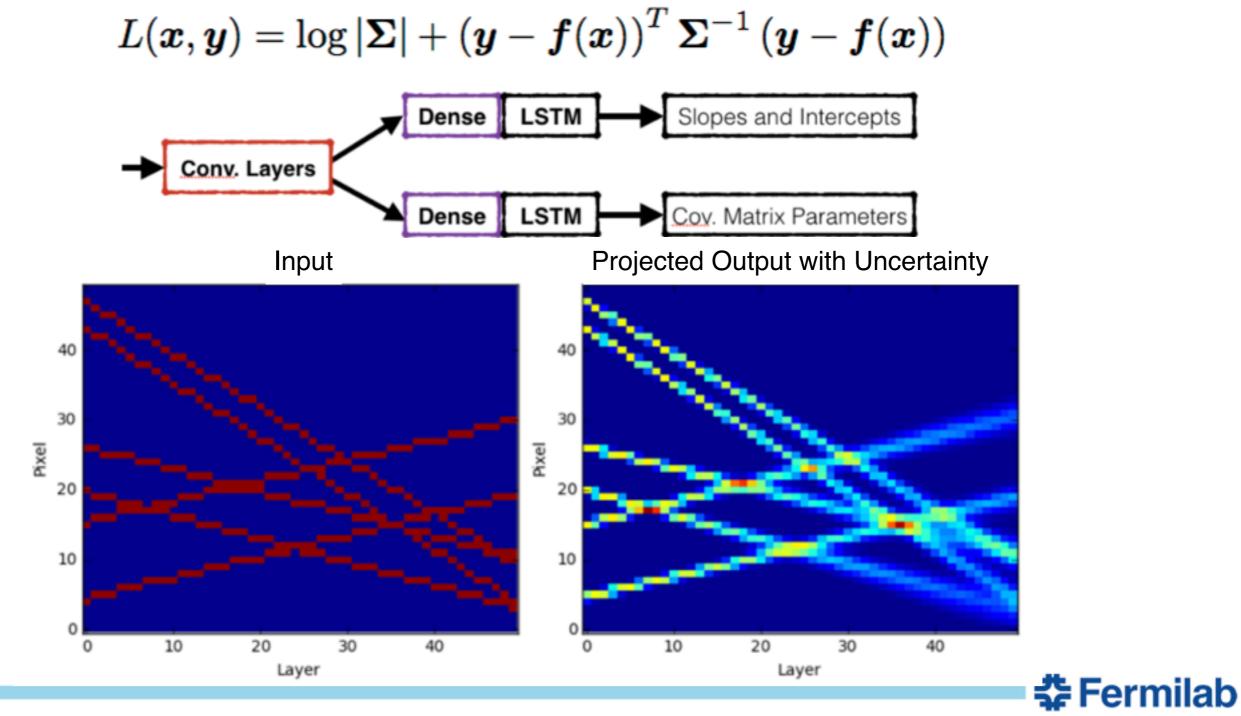
Model process the image and identifies all track in one pass



¹⁵ ACAT 2017, Seattle, WA, USA

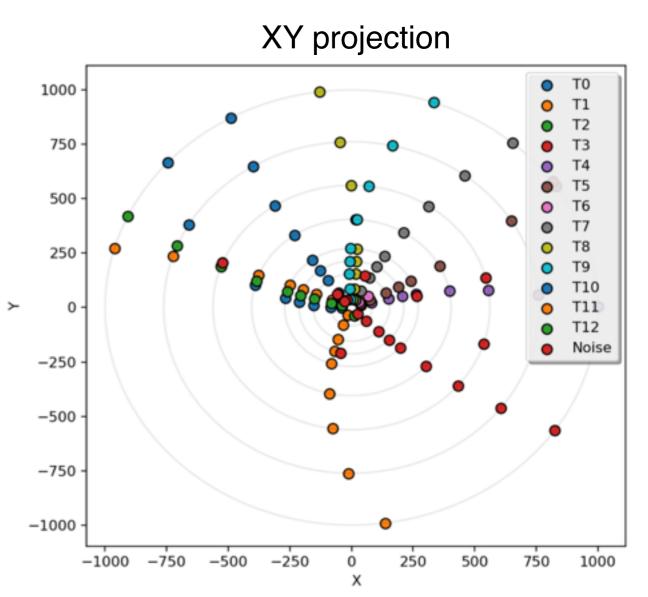
Estimate Uncertainties on Parameters

 Add additional targets to estimate the uncertainties, by minimize negative gaussian log likelihood:



Hit Assignment to Tracks: Detector Geometry

- Using a 3D approach with curve tracks and missing hits we can try to find tracks given a set of hits
 - Base of generate the dataset was the "<u>TrackMLRamp</u> <u>hackathon : a 2D tracking</u> <u>challenge</u>" where an extra dimension was add
 - Events where generated with a constant magnetic field
 - Random noise was also added



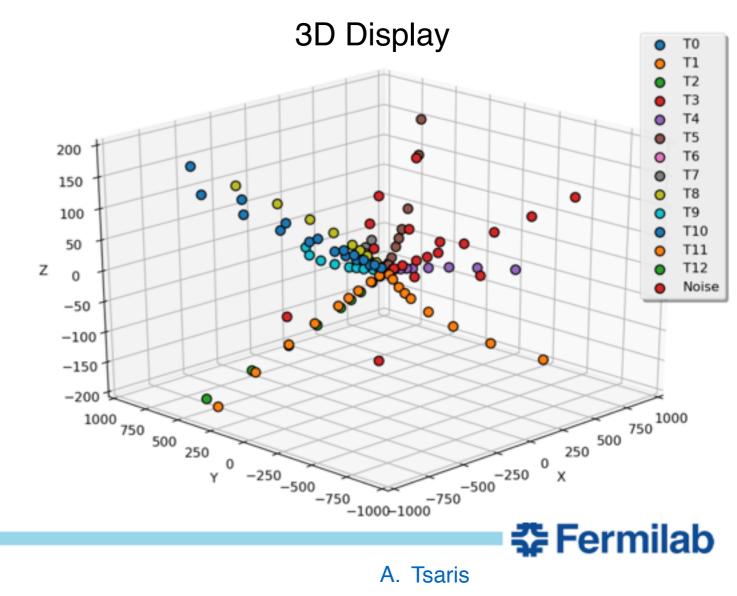
A. Tsaris

🛟 Fermilab

Hit Assignment to Tracks: Input Format

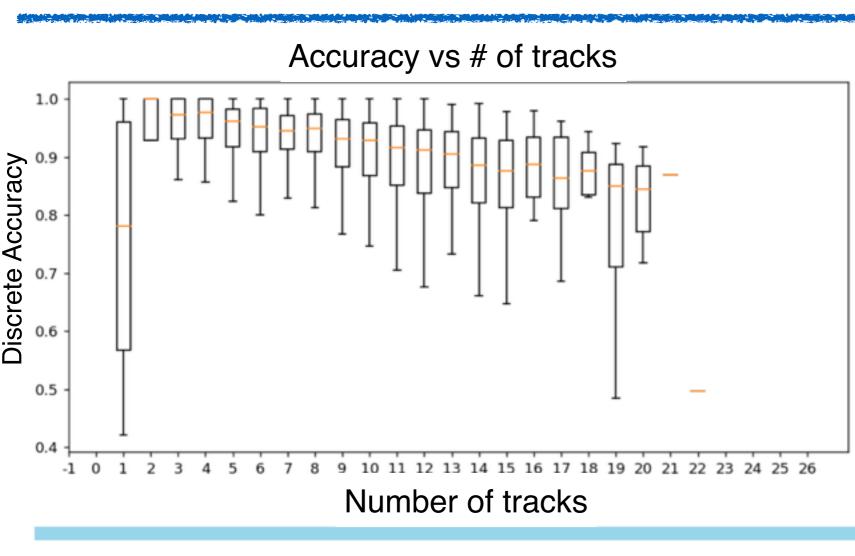
- Input is a set of hit positions in the detector (r, Φ, z in this case)
- All input hits are fed in across all layers in this way

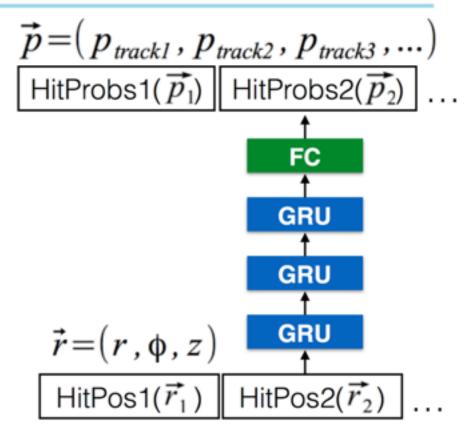
In	put Data		Ground Truth	Track 0	Track 1	
	Φ	z	r	Hit 0	1	0
0	-2.983331	-165.984650	1000.0	Hit 1	1	0
1	-2.795776	-126.480309	762.0			
2	-2.650811	-93.283379	562.0	Hit 2	0	1
3	-2.578860	7.786216	39.0	Hit 3	0	1



Hit Assignment to Tracks: Model and Performance

- Output is a matrix of probabilities of hits in tracks
- Three stack Bi-directional GRU layers were used instead of LSTM (faster training for shallow networks) with two dropout layers in between

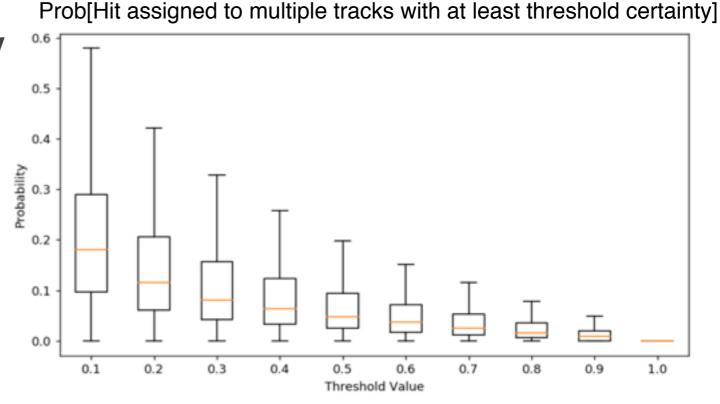




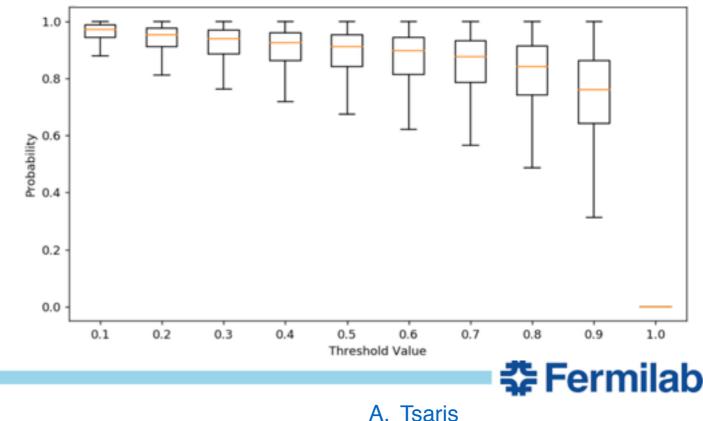
- Accuracy is been calculated selected the hit with the highest probability
- Seem we can benefit on training with higher statistics (train was done with 25K events) on a deeper network

Hit Assignment to Tracks: Performance and Thresholds

- The track selection efficiency can be increased by putting a threshold in the score of hits belong to a track (given small ambiguities)
- Further study is under going



Prob[Hit assigned correctly with at least threshold certainty]



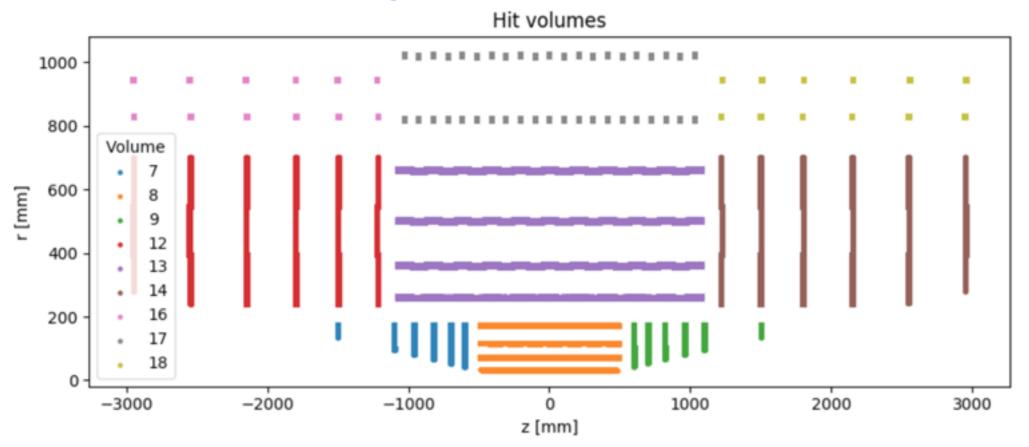
Output Matrix

Prediction	Track 0	Track 1
Hit 0	0.8	0.2
Hit 1	0.9	0.1
Hit 2	0.6	0.4
Hit 3	0.1	0.9

²⁰ ACAT 2017, Seattle, WA, USA

The ACTS (A Common Tracking Software) Dataset

- Increase complexity and realism by using datasets from a LHC-like detector with different layer boundaries
 - Details about the ACTS framework and simulation can be found in <u>A. Salzburger CTD 2017 talk</u>

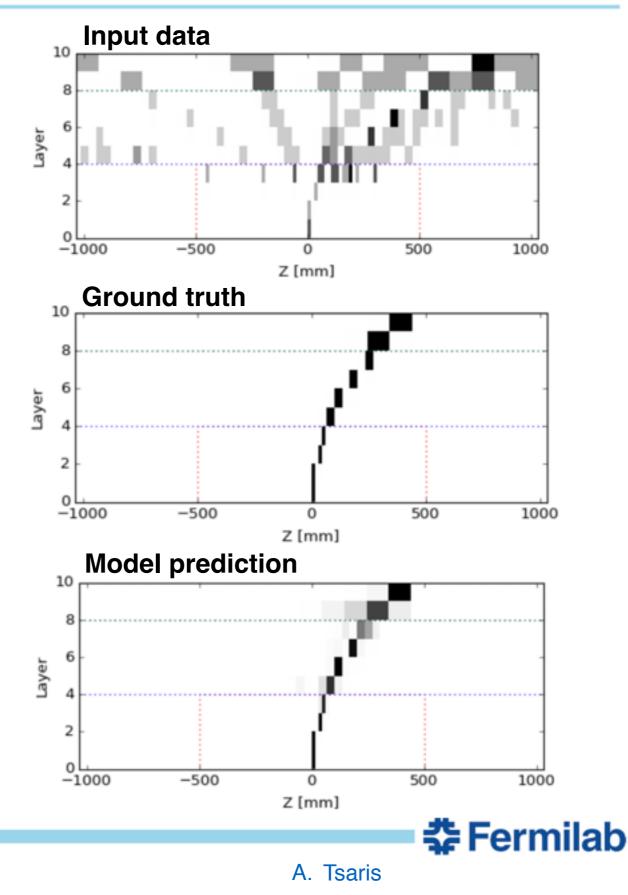


• The barrel volumes (8, 13, 17) have been used for now, but the end-cap hits are also available

🚰 Fermilab

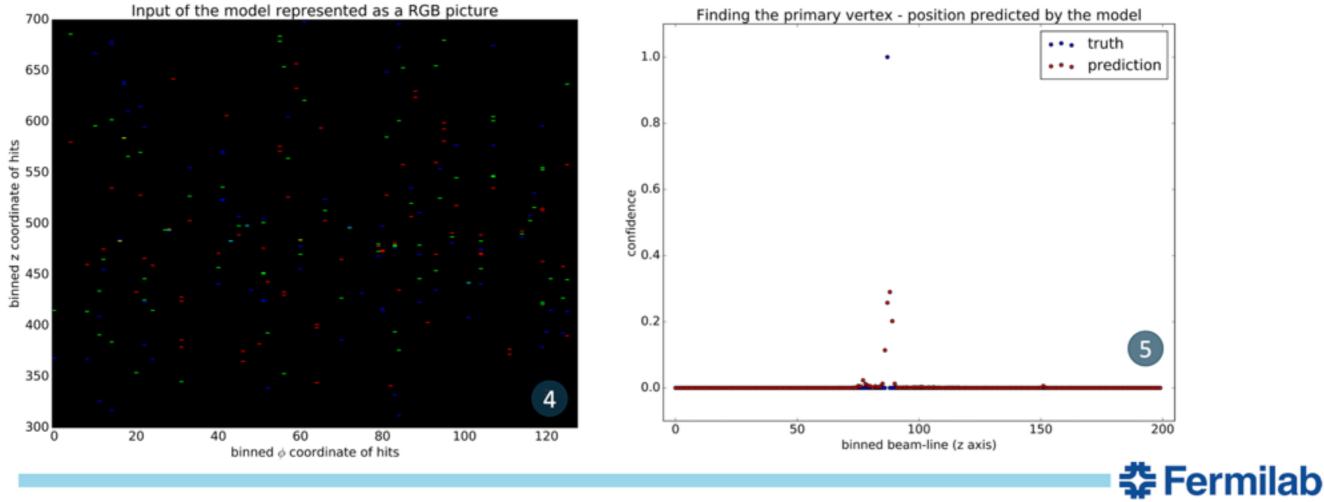
Track Finding with LSTM (on ACTS Dataset)

- Apply the 3D hit classification LSTM to a realistic dataset (one projection of the model predictions is shown here)
- Binning was done per barrel detector volume (layer transformation is shared within a volume)
- Promising proof of concept.
 Detailed studies underway



Vertex Finding with CNN (on ACTS Dataset)

- Find the primary vertex position to constrain the seeding algorithm
- An architecture similar to LeNet was used
- Input is the 3 innermost barrel pixel layer hits binned in Z and φ (RGB image)
- Output is the binned primary vertex Z position



Vertex Finding with CNN (on ACTS Dataset)

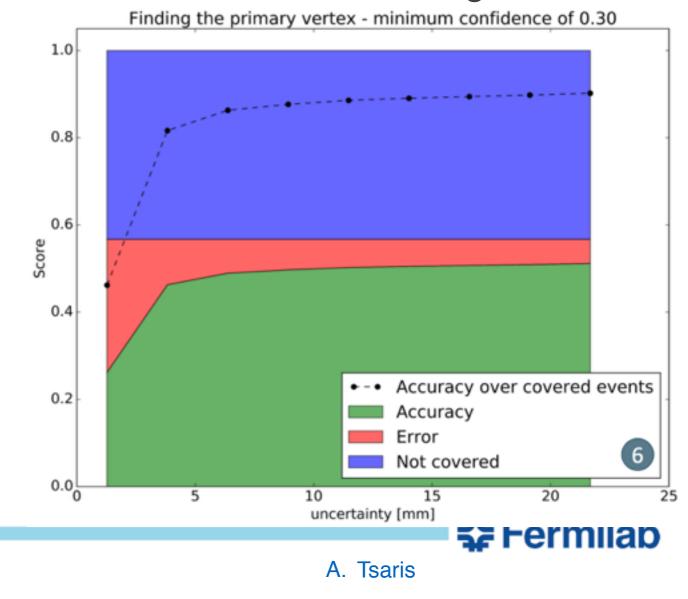
 Both events with single and multiple vertex were explored

Average vertices per event	Accuracy	
5	0.46	
25	0.15	

Performances for the primary vertex finding on two different datasets with a resolution of 7.65mm

 More studies are on going, there is still potential to improve the efficiency of the algorithm.

- Increase the accuracy of the vertex finding by cutting on confidence of the output:
- 81% accuracy for a resolution of 7.65 mm and a coverage of 57%



Conclusion

- Developing a new, scalable tracking algorithm of HL-LHC era is critical for detector performance
- The HEP.TrkX project is formed to explore ideas for applying ML algorithms for this problem
- RNN and CNN showed promising results in toy model testings
- Going forward:
 - Increase the complexity and realism of the problem. This has already started with a fix framework (i.e. <u>ACTS generic tracker</u>)
 - Converge to the most promising ideas and study them in depth
 - Compare the performance with novel algorithms (i.e. Parallel Kalman Filter)
- <u>Stay tune for further results !!!</u>

Fermilab

Backup

²⁶ ACAT 2017, Seattle, WA, USA

Previous HEP.TrkX Presentations

- <u>Convolutional NNs for Tracking DS@HEP Workshop at</u> <u>FNAL</u>, <u>Steve Farrell</u>
- HEP.TrkX IML Machine Learning Workshop, Dustin Anderson
- <u>The HEP.TrkX project: Deep Neural Networks for HEP</u> <u>Tracking @ CTD/WIT 2017</u>, Steve Farrell
- ML LHC Tracking Challenge@ CHEP 2016, Paolo Calafiura

