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Tracking at the LHC
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LHC particle tracking algorithms
have seen great success in Runs
| and |l. In a nutshell:

— Track seeding: using
combinatorial search

— Track building: using
combinatorial Kalman Filter (is
the most time consuming part)

— Track fitting: final parameter
estimation
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Credit: Andy Salzburger
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Tracking at the HL-LHC

* The High-Luminosity LHC will
increase the number of charged
particles and the detector
occupancy

— Wil increase the collisions
per crossing up to 200

— Traditional tracking
algorithms scale at least
guadratically with increasing
detector occupancy

— Tracking algorithms will need Image: CMS
to run faster and in parallel
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http://cms.web.cern.ch/news/reconstructing-multitude-particle-tracks-within-cms

Some Deep Learning Inspirations

Image
Segmentation
using R-CNN

s ©
-:m.-z — o M et (sees)
T, -m.....m\ o lhec e 0 .(m,_mum

Online object
tracking using
RNN

Anton Milan et al,_https://arxiv.org/pdf/1604. pdf 04[

4 ACAT 2017, Seattle, WA, USA

Our goal (more or less..

)

: P s Wi

Ground truth

Tracking result

A. Tsaris
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https://arxiv.org/pdf/1604.02135.pdf
https://arxiv.org/pdf/1604.03635.pdf

The HEP.TrkX Project

* Pilot project funded by DOE ASCR and COMP HEP
 Part of HEP CCE
* Qur collaboration:

— LBL: Steve Farrell, Mayur Mudigonda, Prabhat, Paolo Calafiura,
Julien Esseiva

— Caltech: Dustin Anderson, Jean-Roch Viimant, Josh Bendavid,
Maria Spiropoulou, Stephan Zheng

— FNAL: Me, Giuseppe Cerati, Jim Kowalkowski, Lindsey Gray,
Panagiotis Spentzouris, Daniel Zurawski, Keshav Kapoor

 (Goals:

— Explore and develop new tracking algorithms based on modern
ML technigues

— Demonstrate a scalable algorithm with the potential to
reconstruct tracks in the HL-LHC conditions
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Possible Applications in Tracking
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Seed finding: improve the scaling of current algorithms

Hit Clustering and building tracks: replace Kalman Filter
with a better/faster iterative algorithm

Track fitting: use RNN for track parameter estimation

End to end method: cluster hits directly into tracks or
produce values for track parameters
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Toy Datasets

Most of the

development so far has

been done in toy
datasets

No missing hits

noise

ACAT 2017, Seattle, WA, USA

Straight line tracks

Random background
tracks and or uniform

Single track with noise 2D

Multi-track in 2D

30

Pixel

10 |
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Long-Short-Term Memory (LSTM)

« LSTM are recurrent neural networks
that model long term dependencies in

sequence data by carrying memory ‘{qy}‘{qy}‘{
— Produce a sequence of outputs
— Could be a better alternative to the

combinatorial scaling problem in input Cell
KF algOritth @ output Cell
—  Find multi tracks at once @ vemory cel
3& Fermilab
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http://www.asimovinstitute.org/neural-network-zoo/
http://www.asimovinstitute.org/neural-network-zoo/

Hit Classification with LSTM in 2D

* At each step it considers a slice of

Try to reconstruct this seeded track
the detector and outputs a Y

11 ] ] npu Model prediction
probabilistic estimate of the track j input predict
hit location in the current slice o ¢ w0
* The LSTM memory state L
propagates relevant information *
from layer to layer o 10 y ==
Output detector layer : E Layer 0 10 20Layer 37 40
predictions

Target track Uncertainty is larger near track intersection points

0
softmax activations

Model prediction

Track with 20% noise__._,.

Pixel

Input detector layer
arrays

0 10 20 30 40
Layer
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Convolutional Neural Networks (CNN)
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CNNSs have great success in image < N0
classification, can be used as track finders: >—< o~
— Treat track finding as an image > <o>

recognition problem &'
— Early layers look for track stubs >_< o
— Later layers connect stubs together to nout Cell -

build tracks

. Output Cell (O Convolution or Pool

— Learn abstract features of the datathat o ...,

can be used to extract track parameters
or ClaSSify hitS http://www.asimovinstitute.org/neural-network-zoo/

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

r ------- ~ee..  dog(0.01)
"_'-_ Qag‘b‘f;??éw
11 !?E ----- N bird (0.02)

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
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http://www.asimovinstitute.org/neural-network-zoo/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Hit Classification with CNN in 3D

Projected input

 Basic CNN model with 10
layers and 3x3x3 filters

3 avg bkg tracks, 1% noise

i - = °
4 "
do(e((o, I‘)?Ver 6 7 . -l 5
8 0
L, -
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Architectures Comparison for Hit Classification in 3D
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Deep LSTM: more fully
connected layers H

Bi-directional LSTM: run
forward and backward
simultaneously

Next-layer LSTM:
prediction of the hitinthe <.,
next detector layer

Convolutional 02
autoencoder: alternative to
LSTM for layer by layer 00
prediction

0.8

0.6

Accuracy

ACAT 2017, Seattle, WA, USA

Hit Classification accuracy

= BILSTM
= ConvAE
= ConvNN
= |STM
= DeeplLSTM
= NL-LSTM

o

20 a0 60 80 100
Average number of background tracks
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End to End Approach for Predicting Track Parameters

* Target directly on parameter predictior
(slope & intercept in thiscase) oW

 Example single track with large noise

Input Projected output

Conv (3x3) x16

Relu __/

20

10

0

0 10 20 30 40
Layer
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End to End Approach for Predicting Track Parameters

* For many tracks per event add LSTM
network at the end

Relu __/

Dense (400)
LSTM (400)

Intercept 1 Intercept 3

* The memory cell updates to focus on
a new track in the image

Vision Language A group of people

Deep CNN  Generating shopping at an

s A \ RNN outdoor market.
; %g > @ There are many

/ vegetables at the
* fruit stand.
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End to End Approach for Predicting Track Parameters

* Model process the image and identifies all track in one pass

Projected output
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Input

0 10 20

Residual distribution for NN: u=0.000, ¢

0. 146

40

-1.0 -0.5 0.0 0.5
Slope (truth-predict)

ACAT 2017, Seattle, WA, USA
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0.2

0.0
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R

esidual distri

30 40

bution for NN: p=0.055, o =0.526

-2

sl

0 2
Intercept (truth-predict)

A. Tsaris

2= Fermilab



Estimate Uncertainties on Parameters

* Add additional targets to estimate the uncertainties, by minimize
negative gaussian log likelihood:

L(z,y) =log|Z| + (¥ — f(x)" =7 (y — f(z))

Dense LSTM]—D[:Slopes and Interceptﬂ

= Conv. Layers

Input

Dense LSTM]—PEOV. Matrix ParameterE]

Projected Output with Uncertainty

Pxel

Pixel

0 10 20

30 40

Layer
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Hit Assignment to Tracks: Detector Geometry
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Using a 3D approach with curve

tracks and missing hits we can

try to find tracks given a set of

hits

— Base of generate the dataset
was the “TrackMLRamp
hackathon : a 2D tracking -
challenge” where an extra
dimension was add

— Events where generated with
a constant magnetic field

— Random noise was also
added

ACAT 2017, Seattle, WA, USA
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https://indico.cern.ch/event/577003/contributions/2476446/attachments/1423512/2183608/tr170307_davidRousseau_CTDWIT2017_trackML.pptx.pdf

Hit Assignment to Tracks: Input Format
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Input is a set of hit
positions in the
detector (r, D, z In
this case)

All input hits are fed
in across all layers In
this way

ACAT 2017, Seattle, WA, USA
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Hit Assignment to Tracks: Model and Performance

» QOutput is a matrix of probabilities of hits in p =(pvac'k1;ptrack2' Piracks » )
tracks HitProbs1( p,) || HitProbs2(p,) | ...
* Three stack Bi-directional GRU layers were
used instead of LSTM (faster training for
shallow networks) with two dropout layers in
between
Accuracy vs # of tracks F=(r,9,z)

ol 1) q { | HitPos1(7)) | HitPos2(75) |...
g IE [E [E [P [P m [IJ ﬁ 0 . ACcuréCy is been calculated
g °° selected the hit with the
E . i highest probability
5 » Seem we can benefit on
a training with higher statistics

05 [ (train was done with 25K

N events) on a deeper network

-1 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of tracks
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Hit Assignment to Tracks: Performance and Thresholds

Prob[Hit assigned to multiple tracks with at least threshold certainty]

* The track selection efficiency *{
can be increased by putting
a threshold in the score of .
hits belong to a track (given i {
small ambiguities) T [ 7

* Further study is under going JL T Y HE écI: L
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. Prob[Hit assigned correctly with at least threshold certaint
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The ACTS (A Common Tracking Software) Dataset

* Increase complexity and realism by using datasets from a
LHC-like detector with different layer boundaries

— Details about the ACTS framework and simulation can be
found in A. Salzburger CTD 2017 talk

Hit volumes
wood 0220 "mmmmaEaNatEsgRaEgegns
800 - * = = = ® f ggpEEEEEEEEEEEEENEEENEREE
Volume
. 7
T 6001 . g
E . 9
a0l * 12
o] 13
. 14
2001 + 16
. 17 I ll”l_"lll I
18 .
0- L} L] | A L} L] ]
-3000 -2000 -1000 0 1000 2000 3000

Z [mm)]

* The barrel volumes (8, 13, 17) have been used for now, but

the end-cap hits are also available
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https://indico.cern.ch/event/577003/timetable/?view=standard#57-status-of-the-acts-a-common

Track Finding with LSTM (on ACTS Dataset)

o Input data

* Apply the 3D hit classification : . =
LSTM to a realistic dataset 8 L .’l !
_ _ T 4l oM 1|
(one projection of the model 2
- ~500 g 500 1000

22

predictions is shown here)

10

Ground truth

Binning was done per barrel 6 fnr-
detector volume (layer ] B o
transformation is shared within . | |

a volume)

Promising proof of concepit.
Detailed studies underway

Layer

ACAT 2017, Seattle, WA, USA

Z [mm]

Model prediction

500 1000
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Vertex Finding with CNN (on ACTS Dataset)
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Find the primary vertex position to constrain the seeding algorithm
An architecture similar to LeNet was used
Input is the 3 innermost barrel pixel layer hits binned in Z and ¢

(RGB image)

Output is the binned primary vertex Z position

0 20 40 60 80

binned o coordinate of hits

ACAT 2017, Seattle, WA, USA

Input of the model represented as a RGB picture
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1.0}
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v 04)

0.2

0.0

___Finding the primary vertex - position predicted by the model

, 0.6

«*e truth
*« prediction

(5

Sk ce

50 100 150 200
binned beam-line (z axis)
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Vertex Finding with CNN (on ACTS Dataset)

Both events with single and
multiple vertex were explored

Average vertices per event Accuracy
5 0.46
25 0.15

Performances for the primary vertex finding on two different
datasets with a resolution of 7.65mm

24

More studies are on going,
there is still potential to
improve the efficiency of the
algorithm.

ACAT 2017, Seattle, WA, USA

* Increase the accuracy of the

vertex finding by cutting on
confidence of the output:

* 81% accuracy for a resolution of
7.65 mm and a coverage of 57%

Score

1.0

0.8

0.6}

0.4

0.2

0.0

Finding the primary vertex - minimum confidence of 0.30

» -« Accuracy over covered events

B Accuracy
B Error

I Not covered

5 10 15
uncertainty [mm]

aF rermiiap

A. Tsaris
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Conclusion

» Developing a new, scalable tracking algorithm of HL-LHC era is
critical for detector performance

 The HEP.TrkX project is formed to explore ideas for applying ML
algorithms for this problem

 RNN and CNN showed promising results in toy model testings

* Going forward:

— Increase the complexity and realism of the problem. This has
already started with a fix framework (i.e. ACTS generic tracker)

— Converge to the most promising ideas and study them in depth

— Compare the performance with novel algorithms (i.e. Parallel
Kalman Filter)

« Stay tune for further results !!!
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https://gitlab.cern.ch/acts/a-common-tracking-sw

Backup
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Previous HEP.TrkX Presentations
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Convolutional NNs for Tracking DS@HEP Workshop at

FNAL, Steve Farrell

HEP.TrkX IML Machine Learning Workshop, Dustin

Anderson
The HEP.TrkX project: Deep Neural Networks for HEP

Tracking @ CTD/WIT 2017, Steve Farreli

ML LHC Tracking Challenge@ CHEP 2016, Paolo Calafiura
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https://indico.fnal.gov/getFile.py/access?contribId=18&sessionId=1&resId=0&materialId=slides&confId=13497
https://indico.cern.ch/event/595059/contributions/2498118/attachments/1431635/2199380/03222017heptrkx_IML.pdf
https://indico.cern.ch/event/577003/contributions/2476580/attachments/1424886/2185488/Farrell_HEPTrkX_CTD2017.pdf
https://indico.cern.ch/event/505613/contributions/2228337/

