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Introduction

In order to take full advantage of new computer architectures and to satisfy the requirement of maximiz-
ing the CPU usage with increasing amount of data to analysis, parallelization and vectorization have been
introduced in the ROOT mathematical and statistical libraries, requiring minimal changes in user code.
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As part of this effort, new generic classes supporting a task based parallelization mode have been defined
in ROOT, which can be used for a wide range of computational tasks in the field of High Energy Physics.
The support for different SIMD’s libraries has also been included.

Tools for parallelism

Task level parallelism: TThreadExecutor

• Task-oriented, multithreaded MapReduce for ROOT
• Provides operations Map, Reduce, Foreach and even chunked mapping with partial reduction.
• Used in math fitting, TMVA(Boosted Decision Tree evaluation, Deep Neural Networks processing), Im-
plicit multithreading operations in I/O (reading, deserialization and decompression of tree branches in
parallel, parallel writing) and for parallel execution of functional chains in TDataFrame.

auto mapFunc = [](const UInt_t &i){
return i+1;

};

auto reduceFunc = [](const std::vector<UInt_t> &mapV){
return std::accumulate(mapV.begin(), mapV.end());

};

ROOT::TThreadExecutor pool;
pool.MapReduce( mapFunction, ROOT::TSeq<int>(100), reductionFunction);

Instruction level parallelism: VecCore

• Provides efficient vectorization on all platforms by writing abstract, architecture-generic code that will
map to each of its optional backends’ concrete types, methods or instructions. Includes a scalar backend
for the case when SIMD operations are not available.
• See the poster ”Speeding up software with VecCore, a portable SIMD library” by Guilherme Amadio.

Fitting Parallelization
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Higgs Fit

Current implementation
//Higgs Fit: Implementation of the scalar function
double func(const double *data, const double *params)
{

return params[0] * exp(-(*data + (-130.)) * (*data + (-130.)) / 2) +
params[1] * exp(-(params[2] * (*data * (0.01)) - params[3] *
((*data) * (0.01)) * ((*data) * (0.01))));

}

TF1 *f = new TF1(”fScalar”, func, 100, 200, 4);
f->SetParameters(1, 1000, 7.5, 1.5);
TH1D h1f(”h1f”, ”Test random numbers”, 12800, 100, 200);
h1f.FillRandom(”fvScalar”, 1000000);
h1f.Fit(f);

Vectorized plus parallelized implementation
//Higgs Fit: Implementation of the vectorized function
ROOT::Double_v func(const ROOT::Double_v *data, const double *params)
{

return params[0] * exp(-(*data + (-130.)) * (*data + (-130.)) / 2) +
params[1] * exp(-(params[2] * (*data * (0.01)) - params[3] *
((*data) * (0.01)) * ((*data) * (0.01))));

}

//This code is totally backwards compatible
TF1 *f = new TF1(”fvCore”, func, 100, 200, 4);
f->SetParameters(1, 1000, 7.5, 1.5);
TH1D h1f(”h1f”, ”Test random numbers”, 12800, 100, 200);
h1f.FillRandom(”fvCore”, 1000000);

//Added multithreaded fit option
h1f.Fit(f, ”MULTITHREAD”);

Performance of the Higgs Fit on your laptop
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