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Introduction

In order to take full advantage of new computer architectures and
to satisfy the requirement ofmaximizing the CPU usagewith increas-
ing amount of data to analysis, parallelization and vectorization have
been introduced in the ROOT mathematical and statistical libraries.
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As part of this effort, new generic classes supporting a task based
parallelization mode have been introduced in ROOT, which can be
used for a wide range of computational tasks in the field of High En-
ergy Physics. The support for different SIMD’s libraries has also been
included.

All these different tools for parallelism come together when paral-
lelizing the fitting. As a result of this work, vectorization and paral-
lelization have been introduced in ROOT requiring minimal changes
in user code.

The Higgs fit is a good case example to report on the improvements
obtained in the function evaluation, used for data modelling, by
adding the support for SIMD vectorization and multithreaded paral-
lelization. We will display for this use case how the different evalua-
tions of the likelihood and the least square functions used for fitting
ROOT histograms, graphs and trees perform.

Tools for parallelism

ROOT provides several generic classes for the expression of paral-
lelism at different levels. Some of them play a central role when par-
allelizing ROOT fitting classes.

Task level parallelism: TThreadExecutor

TThreadExecutor is a task-oriented, multithreaded MapReduce for
ROOT, provides a simple programming model for parallel MapRe-
duce operations on decoupled-data based loops:

auto mapFunc = [](const UInt_t &i){
return i+1;

};

auto reduceFunc = [](const std::vector<UInt_t> &mapV){
return std::accumulate(mapV.begin(), mapV.end());

};

ROOT::TThreadExecutor pool;
pool.MapReduce( mapFunction, ROOT::TSeq<int>(100), reductionFunction);

Its interface includes operations like Map, Reduce, Foreach and even
chunked mapping with partial reduction.

Right now is used among others in math fitting, TMVA(Boosted De-
cision Tree evaluation, Deep Neural Networks processing), Implicit
multithreading operations in I/O (reading, deserialization and de-
compression of tree branches in parallel, parallel writing) or for par-
allel execution of functional chains in TDataFrame.

Instruction level parallelism: VecCore

VecCore is a library providing efficient vectorization on all plat-
forms by offering an abstraction layer on top of the libraries Vc and
UME::SIMD, which will provide as optional backends along a scalar
one for the case when SIMD operations are not available.

VecCore allows writing abstract, architecture-generic code that will
map to each of the backends concrete types, methods or instruc-
tions.

Formore informationonVecCore please see theposter ”Speedingup
software with VecCore, a portable SIMD library” by Guilherme Ama-
dio.

Masking for control flow in VecCore
namespace vecCore {

template <typename T> struct TypeTraits;
template <typename T> using Mask = typename TypeTraits<T>::MaskType;

// Masking/Blending
template <typename M> bool MaskFull(M const &mask);
template <typename M> bool MaskEmpty(M const &mask);

template <typename T> void MaskedAssign(T &dst, const Mask<T> &mask, const T &src);
template <typename T> T Blend(const Mask<T> &mask, const T &src1, const T &src2);

} // namespace vecCore

The parallelization tools described define the building blocks for par-
allelizing the fit. TThreadExecutor provides the MapReduce frame-
work to chunk the evaluation and share the computational work-
load between the several threads of the system and VecCore is used
for abstracting SIMD operations and types from the code making it
portable between architectures with different sets of SIMD instruc-
tions.

Fitting

The figure below describes in detail the parallelization process of the
fitting functions in both task level and instruction level.

Vectorization will be applied for evaluating the function several
points at a time in themultithreadedMap stage, which will generate
several partial results in each thread to combine in a final reduction
step.

Fitting Parallelization

Case example: Higgs Fit

In order to report on theperformanceof theparallelizationdescribed
we decided to apply it to the well known Higgs Fit.

Higgs Fit

The pieces of code below compare the current code used for fitting
the case example with the code needed for a fully parallelized imple-
mentation of the same fit.

Current implementation
//Higgs Fit: Implementation of the scalar function
double func(const double *data, const double *params)
{

return params[0] * exp(-(*data + (-130.)) * (*data + (-130.)) / 2) +
params[1] * exp(-(params[2] * (*data * (0.01)) - params[3] *
((*data) * (0.01)) * ((*data) * (0.01))));

}

TF1 *f = new TF1(”fScalar”, func, 100, 200, 4);
f->SetParameters(1, 1000, 7.5, 1.5);
TH1D h1f(”h1f”, ”Test random numbers”, 12800, 100, 200);
h1f.FillRandom(”fvScalar”, 1000000);
h1f.Fit(f);

Vectorized plus parallelized implementation
//Higgs Fit: Implementation of the vectorized function
ROOT::Double_v func(const ROOT::Double_v *data, const double *params)
{

return params[0] * exp(-(*data + (-130.)) * (*data + (-130.)) / 2) +
params[1] * exp(-(params[2] * (*data * (0.01)) - params[3] *
((*data) * (0.01)) * ((*data) * (0.01))));

}

//This code is totally backwards compatible
TF1 *f = new TF1(”fvCore”, func, 100, 200, 4);
f->SetParameters(1, 1000, 7.5, 1.5);
TH1D h1f(”h1f”, ”Test random numbers”, 12800, 100, 200);
h1f.FillRandom(”fvCore”, 1000000);

//Added multithreaded fit option
h1f.Fit(f, ”MULTITHREAD”);

The only changes required are make the fitting function vectorized
(change the data parameter type and the return type in this case)
and to specify the ”MULTITHREAD” option to the fitting. This makes
most of the existing user code elegible to vectorize with very little
effort.

Below we present some of the performance measurements made
while woking on this case example. All the fitting times have been
normalized to the number of function calls made by the fitter, as the
nature of minimization problems will make the number of calls fluc-
tuate between examples and influence the times.

Note that the compiler will try to autovectorize operations in the
scalar case, and our current implementation for the function evalu-
ation will provide help in that direction. This may make the vector-
ization times not look so good.

Performance of the Higgs Fit on your laptop

The figure above describes the speed up obtained fitting o a typi-
cal mass-consumption general purpose computer, a 4-coremachine
with different sets of vectorization instructions and different evalua-
tion functions.

Below, we study the scaling of multithreaded operations on a 14
cores Haswell processor with SSE2 as SIMD instruction set. While
it scales in the multithreaded scalar case, vectorization limits the
speedup obtained on the multithreaded vectorized case.

Higgs Fit Scaling With Number of Cores

It is also interesting to show how different compilers behave when
vectorizing:

Autovectorization in ICC

We find out that ICC autovectorizes more agressively than the other
compilers, matching the explicitly vectorized times. For a more fair
comparision, avoidingautovectorizationwhencompiling, the results
betweencompilers are closeenough,with ICC slightlyunderperform-
ing Clang and GCC:

Compiler performance
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