

Application of deep learning to the analysis for $B \rightarrow K^*\gamma$ in Belle II

ABHINAV VISHNU, SAM CUNLIFFE, MALACHI SCHRAM, JAN STRUBE, CHARLES SIEGEL

Belle II Overview

Proudly Operated by Baffelle Since 1965

- Goal: discover new particles and phenomena beyond the Standard Model of particle physics
- Collaboration among 725+ physicists from 104 institutes in 24 countries
- ► 50x the data volume, 40x rate of collisions relative to previous Belle experiment
- PNNL led U.S. (DOE) contribution to Belle II detector construction – now complete
- Largest ever U.S. science investment in Japan
 - More Ph.D. physicists (50+) and more institutions (14) than any other country
- SuperKEKB: single beam circulation was done successfully (phase 1 in 2016)
- Cosmic-ray data taking is on-going
- Physics run will start in 2018

Accelerating discovery in HEP/NP with scalable computing solutions

- PNNL leverages virtualization technologies use by PNNL's team to enable quick solutions to access the LCFs resources at NERSC (Edison/Cori) and ORNL (Titan)
- Currently working on a large scale demonstrator for Distributed Large Scale Data Analytics using MaTEx

A Belle II physics analysis

- B→K*γ is a Flavor Changing Neutral Current (FCNC) and sensitive to New Physics (NP) contributions to C₇
 - Also strong constraint to global NP-Wilson coefficient fits
 - Recent phenomenology paper: [https://arxiv.org/abs/1608.02556]

- Expect 50–70 events if we get 5fb-1 of physics Y(4S) next year
- Goal: "re-observation", validation of detector performance, and benchmarking measurement of A_{CP}?

Proudly Operated by Battelle Since 1965

- B→K*γ is a FCNC and sensitive to NP contributions to C₇
 - Also strong constraint to global NP-Wilson coefficient fits
 - Recent phenomenology paper: [https://arxiv.org/abs/1608.02556]

- Expect 50–70 events if we get 5fb-1 of physics Y(4S) next year
- ▶ Goal: "re-observation", validation of detector performance, and benchmarking measurement of A_{CP}?

Keras+TensorFlow classifier study

Proudly Operated by Battelle Since 1965

- Keras+TensorFlow are open source 'standard' python ML libraries [https://keras.io/] [https://www.tensorflow.org/]
- ► How well do these tools work for our use case? B→K*γ
 - **Pilot** investigation with Belle II simulation where we have well defined benchmarks (TMVA results)
- Same cocktail of variables as in TMVA training
- Only training against B background for now

cf

Keras+TensorFlow classifier setup

- Label samples (in this case: signal or BB background)
 - Can extend categories for continuum (maybe individual qq samples)
- 2. Split 0.33 test, 0.66 training
- 3. Normalize variables
- 4. Define 6 layer 'fully connected' neural network
 - Dropout rate @ 15% .. avoid over-fitting [https://arxiv.org/abs/1207.0580]
- 5. Use Adam optimiser [https://arxiv.org/abs/1412.6980v8] to minimize loss function = binary cross entropy
 - Minimise misclassification
- 6. Validation on 0.25 of training sample
 - Continual evaluation through epochs 'sanity check'
- 7. Train for 10 epochs
 - Can increase as we get more confident: computing resources etc.

Preliminary Machine learning results for B→K*γ

Proudly Operated by Battelle Since 1965

Belle II simulation, preliminary

- Improvements seen with TensorFlow neural networks cf. TMVA
- Becoming industry standard, actively maintained / improved
- Benchmarking in 'easy' mode: precursor to trying out with more complex analysis (e.g. B→K(*)ττ)

Preliminary Machine learning significance results for B→K*γ

Proudly Operated by Battelle Since 1965

- You should compare the green LH to blue RH
- The Kera+TensorFlow neural net has a smoother plateau at optimal
 - Less systematics headache due to choice of cut point
- ► **45%** gain in **significance** = $S/\sqrt{S+B}$

Thoughts on Machine learning for B→K(*)TT

Much more complicated final states. Example fully hadronic decay:

- 3 vertices
- 8 tracks
- Use "low" level information such as vertices, tracks, track quality, PID, etc.
- Staged classification

MaTEx: Scalable Deep Learning Software on HPC

Proudly Operated by Battelle Since 1965

- 1) Open source software with users in academia, laboratories and industry
- 2) Supports graphics processing unit (GPU), central processing unit (CPU) clusters/LCFs with high-end systems/interconnects
- Machine Learning Toolkit for Extreme Scale (MaTEx): [hpc.pnl.gov/matex]
- 4) 100+ visits/day, ~20 unique visits/day, 3-5 clones/day from github (> 1K clones)

MaTEx computing performance using HEP image like data

- Using up to 32 compute nodes on Cori provides ~26x speedup
- Conceptually similar to iTOP "ring image" DL study for Belle II PID
- Current evaluation and testing is undergoing on Titan and Summitdev architectures

Belle II iTOP Particle IDentification

Proudly Operated by Baffelle Since 1965

- ► The Belle II iTOP detector provides PID by comparing between the particle hypothesis and the "measuring" of the Cherenkov angle
- Currently using an analytical solution based on track momentum vector and impact parameters (angle/position)
- Previously, minimization solutions were considered computing prohibitive because of the phase space and edge effects
- Scalable DL might provide a solution for a robust PID by training over the phase space using LCFs

Grid Components for NERSC

Proudly Operated by Battelle Since 1965

DIRAC

Workload Management Agent

SiteDirector

- Using modified *GlobusComputingElement*

Resource Definition

OSG.CORI.us

- Defined as GlobusComputingElement
- Mapped to PNNL StorageElement

OSG.EDISON.us

- Defined as GlobusComputingElement
- Mapped to PNNL StorageElement

/cvmfs/belle.cern.ch

-Sync repo to docker

Docker

pnnlhep/osg-compute MaTFx

Belle II HPC Docker

pnnlhep/b2-AB-CD-DE

NERSC

Pull and register into Edison/Cori shifter

Grid submit with docker image and volume host/docker mount points for input/ouput/repo

Summary

- Deep learning is used for Belle II analysis
 - TensorFlow is available within the Belle 2 software framework
 - Kera+TensorFlow shows clear improvements in B→K*γ analysis
 - Investigating more complicated signals such as B→K(*)ττ
- Belle II are developing workflows that can use MaTEx for "big" jobs that use GPUs on Titan
 - DL application on iTOP images can provide improved and robust PID
- Belle II Grid analysis workflow chain are being developed to run on HPC