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Strange quark contribution to nucleon spin
The net spin of the proton is composed of contributions from
its quarks and gluons

1
2 = 1

2

∑
q ∆q + ∆G+ Lq + Lg

•
∑
q ∆q and ∆G are the contributions from the spin and

Lq and Lg are the contributions from the angular
momentum of the quarks and gluons

•
∑
q ∆q = ∆u+ ∆d+ ∆s

We want to know the total contribution to the nucleon spin that comes from the spin
of strange quarks and antiquarks (∆s)

∆s = (s↑ + s̄↑) − (s↓ + s̄↓)

∆s was expected to be zero

• Found to be negative in polarized, charged-lepton, DIS

• Assumes flavor SU(3) symmetry
• Analyses give range ∆s = −0.08 to −0.14 [1]
• Measurements in semi-inclusive DIS gave results consistent with zero

[1] R. L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990).
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Neutral-Current Elastic νp Scattering

∆s can be determined independently in neutral-current (NC) elastic
scattering:

• NC elastic νp cross section:(
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• GNC

E , GNC
M , GNC

A are form factors representing the electric, magnetic,
spin and distributions in the nucleon

• Can get net spin contribution from all three quarks from axial form factor
when Q2 → 0

GNC
A (Q2 = 0) = −∆u+ ∆d+ ∆s

• ∆u−∆d has been determined in neutron decay
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Neutrino-Based Experimental Measurements of ∆s
NC elastic measurement from the E734 neutrino
scattering experiment at BNL

• Measured NC elastic ν − p interactions down
to Q2 = 0.45 GeV2

• Found −0.31 ≤ ∆s ≤ −0.04 [2]

• Sensitive to choice of shape of form factor

• Much of uncertainty due to lack of data at low
momentum transfer (Q2)

NC elastic νp signal is a single, isolated proton

• Difficult to measure at low Q2

• Kinematics determined by proton energy:
Q2 = 2Tmp

ν ν

p p

Zº

Need a dense, high-resolution detector
⇒ Liquid argon time projection chamber

[2] G.T. Garvey, W.C. Louis and D.H. White, Phys. Rev. C 48 (1993) 761.
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Liquid Argon TPCs

• Large liquid argon target for
neutrino interactions

• Charged particles produced in
interaction ionize the argon

• Ionization electrons drift to anode
wire plane due to electric field

Electric field

Liquid argon TPC

Incoming 
neutrino

Charged 
particles

Cathode 
plane

Anode 
wire plane

Readout signal

• Signal from electrons on wires is
read out

• Reconstruct images of events
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MicroBooNE LArTPC

Photo: Fermilab

MicroBooNE detector:

• 3 planes of ∼3000 wires each with 3mm
spacing

• 10 x 2.5 x 2.3 m3

• Each event is ∼30 MB file size

• Installed in detector hall summer 2015

• Two years of running:
have collected 5.6e20 protons on target

• ∼200,000 neutrino events
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Neutral-Current Elastic νp events in MicroBooNE

Simulated 70 MeV proton from NC elastic event

(Q2=0.13 GeV2)

We are able to detect protons that
traverse as few as five wires (1.5
cm)

• Corresponds to a NC elastic
interaction with
Q2 = 0.08 GeV2

We expect 10,000 NC elastic pro-
ton events above during Micro-
BooNE’s three year run

• Makes up ∼5% of neutrino
interactions in MicroBooNE

• Large cosmic background

• Need automated
reconstruction and selection!

• Hasn’t been done before in
a LArTPC
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LArSoft Reconstructed Tracks
Reduce the problem by reconstructing track objects before identifying the
particle and interaction type

1 Hit finding: Fit gaussians to de-noised waveform peaks

2 Track finding:

• Combine hits from step (1) into
tracks

• Return set of reconstructed
three-dimensional tracks

Have gone from 3 × 20 million pixels to ∼20 track objects without losing
much information

• Big reduction in dimensionality!
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Reconstructed track features

The reconstructed track objects contain information about each track that can
be used to classify track type

• There are two main classification goals:

1 Separate neutrino-induced tracks from cosmic-induced tracks
2 Identify neutrino-induced particle type (proton, muon, etc.)

Example goal (1) features:

• Position — is it entering or near the top of the detector?

• Angle — how forward or downward going is the trajectory?

Example goal (2) features:

• Shape — how long, dense, or curvy is the track?

• Charge — charge deposited, how steep is the dE/dx curve?

None of these tell the whole story — we can use a machine learning algorithm
to optimize selections in multiple dimensions at once
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Boosted Decision Trees
Why trees?

• Conceptually similar to traditional
physics cuts

• The feature space is easily
interpretable/understandable

• Works with large datasets

Regression tree:

• A decision tree where each leaf contains
a continuous outcome

• Each split made to maximize information
gain or minimize loss function

Boosted trees:

• Ensemble method (many weak learners
combined)

• Trees are created iteratively

• Each new tree trains based on the
mis-classification of the previous trees
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Boosting and the XGBoost[3] algorithm

Boosting (continued):
• The prediction is a sum of the output of each tree in the ensemble

ŷi =

K∑
k=1

fk(xi)

• fk represents the structure and weights of the kth tree

The goal is to minimize the objective function:

L =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk)

• The loss function, l(ŷi, yi), measures the difference between a prediction
(ŷi) the true label (yi) of the ith sample

• The regularization term,
∑

k Ω(fk), penalizes the complexity of the trees

[3] Tianqi Chen and Carlos Guestrin. 22nd SIGKDD Conference on Knowledge Discovery

and Data Mining (2016) arXiv:1603.02754 (https://github.com/dmlc/xgboost)
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Boosting and the XGBoost[3] algorithm

Gradient-Boosting:
• The loss function, l at tree t is

l(yi, ŷ
(t−1)
i +ft(xi))

• the difference between the true label (yi) and the prediction of the

existing ensemble (ŷ
(t−1)
i ) plus the output of the new tree (ft(xi))

• To simplify the computation, use the second-order approximation:

l(yi, ŷ
(t−1)
i +ft(xi)) ≈ l(yi, ŷ(t−1)

i )

+
∂ l(yi, ŷ

(t−1)
i )

∂ ŷ(t−1)
ft(xi) +

1

2

∂2 l(yi, ŷ
(t−1)
i )

∂2 ŷ(t−1)
f2t (xi)

Now only need to compute the loss function and its derivatives once per
iteration instead of for each split

[3] Tianqi Chen and Carlos Guestrin. 22nd SIGKDD Conference on Knowledge Discovery

and Data Mining (2016) arXiv:1603.02754 (https://github.com/dmlc/xgboost)
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MicroBooNE specifics
Using a multi-class classifier

• Classes: proton, muon, pion, electron/photon, and cosmic
• Protons include both neutrino and cosmic induced simulated tracks
• Muons, pions, electrons, and photons are neutrino induced like
• Cosmics are any non-proton cosmic induced tracks
• Classifies each track independently
• Returns five probabilities per track

P (p) = 0.9789
P (µ±) = 0.0012
P (π±) = 0.0067
P (e±/γ) = 0.0075
P (cosmic) = 0.0058

• Each track is a set of 20 reconstructed track features
• Described on slide 9

• Trained on simulated neutrino and cosmic events
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Performance on simulated protons
Tested the classifier on Monte Carlo simulated neutrino and cosmic events in
MicroBooNE
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• Showing the efficiency vs. purity of the selection on all protons in the
simulation

• The different points represent cuts on different values of proton
probability
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Performance on simulated protons
Tested the classifier on Monte Carlo simulated neutrino and cosmic events in
MicroBooNE
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• Showing the number of simulated neutrino-induced (“BNB”) protons
generated, reconstructed, and classified correctly

• A proton probability of greater than 50% is considered classified as a
proton
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Performance on simulated protons
Tested the classifier on Monte Carlo simulated neutrino and cosmic events in
MicroBooNE
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• Showing the different simulated track types classified as protons
• The blues are protons and the others are mis-classified backgrounds
• A proton probability of greater than 50% is considered classified as a

proton
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Example events from data

• Can select events by requiring that reconstructed tracks are indentified as
specific particle types

NC candidate

• Isolated track classified as proton

CC candidate

• Tracks classified as proton
and muon
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Conclusion

• Can determine the net spin of the strange quarks in the proton through
neutral-current elastic νp scattering

• MicroBooNE can measure low Q2 neutral-current elastic neutrino-proton
events

• The signal is a single short proton track

• Can reconstruct track objects to reduce the dimensionality of the
classification problem

• From 30MB events to tracks with 20 features

• Can accurately classify particle types using gradient-boosted decision
trees

Thank you!
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