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Introduction



Neural Network Architectures

e Relativistic invariants are key variables in HEP problems and
are believed to be learnt implicitly by deep learning

approaches.

e We investigate the minimum network complexity needed to
accurately extact such invariants. Doing so will help us
understand how complex a neural net needs to be to obtain

certain functions.



Software and Hardware

We used Keras (with a Tensorflow backend) on
a NVIDIA Tesla K80.
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Daniel Whiteson's talk

Neural Networks

Essentially a functional fit with many parameters

How complex?
Essentially a functional fit with many parameters

Problem:
Networks with > 1 layer are

Single hidden layer
very difficult to train.

In theory any function
can be learned with

a single hidden layer. Consequence:

Networks are not good
at learning non-linear functions.

But might require very
(like invariant masses!)

large hidden layer

In short:
Can't just throw 4-vectors at NN.

Hidden B Hidden 3

Taken from Daniel Whiteson, Deep Learning in Particle Physics,
ACAT, August 23, 2017



Neural Network Architectures

We take in 4-vectors of events and study the following problems
using NNs.

e prof Z— up
e pr of tt — pp
e Invariant mass of tt — uu

We adjusted these hyperparameters and studied how this affected
accuracy:

e # Nodes

e # Layer
e Activation Function



Finding pr of Z — pp and tt — up
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Z — pp

We see that with a single layer, we train well.

Cost for 1 layer architecture of prin Z - uu

Log of Cost

# Nodes



1 layer with 10 nodes is enough for almost perfect accuracy.
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Looking at the weights generated for the hidden layer, we find:

e E and p, are given weights of 0

e The weights for p, and p, are symmetric for both muons

Thus neural network is learning a non-linear function of
(Px1 + px2) and (py1 + py2)
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Z — pp

Adding an additional layer provided no increase in accuracy.
However accuracy actually dipped with both softplus and RelLU
activations for when we had a single node in the 2" layer.

This same problem occurs for pr of tt — ppu.

Heatmap using ReLU
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ReLU and Softplus suffer from having a zero gradient for negative
inputs.

During training, neurons ‘die’ when they get put in a state where
the output 0 for all inputs.

RelLU Softplus
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LeakyReLU was specifically made to fix this.

LeakyRelLU
10
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Z — pp

Thus using LeakyReLU made this problem go away

Dropout may have also worked.

Heatmap using LeakyReLU
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tt — pp

We see that the same accuracy occurs with tt confirming sample
independence for finding p1 of dimuon production.

pr of tf, 10 Nodes
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Finding Invariant Mass of tt — uu




Predicted pr (MeV)

As seen before, a single layer with 10 nodes can very
accurately predict pr.
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Invariant Mass of tt — uu

Using the same neural net architecture (1 layer with 10 nodes,
LeakyReLU) we get a lower accuracy (r = 0.97).
We get a better accuracy with 20 nodes in a single layer

Invariant Mass of tt - iy, Invariant Mass of tt - up,
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Invariant Mass of tt — uu

We finally achieve similar accuracy as pr when given a large
number of nodes in 2 layers.

Invariant Mass of tt - up,

Layer 1: 80 nodes, Layer 2: 80 nodes
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Invariant Mass of tt — uu

We see little change happening across neural nets when they have
a low number of nodes.

Heatmap Heatmap with large number of nodes
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Used neural nets for regression of transverse momentum and

invariant mass in two-body systems.

LeakyReLU was used in all neural nets (other activation functions

were experimented with).

A single layer with 9/10 nodes has almost perfect accuracy for

finding p7 (in a certain range) of dimuon production.
Sample-independence for finding pr was shown through tt.

Still trying to understand what features of the mass problem is

causing the issues.

We plan to look into other invariants such as decay angles.
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