How easily can neural networks learn relativity?

ACAT 2017
Kartik Chitturi

Dr. Peter Onyisi TE)(AS

August 24t 2017 The University of Texas at Austin

Introduction

Neural Network Architectures

e Relativistic invariants are key variables in HEP problems and
are believed to be learnt implicitly by deep learning

approaches.

e We investigate the minimum network complexity needed to
accurately extact such invariants. Doing so will help us
understand how complex a neural net needs to be to obtain

certain functions.

Software and Hardware

We used Keras (with a Tensorflow backend) on
a NVIDIA Tesla K80.

« I
r NVIDIA.

N

18

Daniel Whiteson's talk

Neural Networks

Essentially a functional fit with many parameters

How complex?
Essentially a functional fit with many parameters

Problem:
Networks with > 1 layer are

Single hidden layer
very difficult to train.

In theory any function
can be learned with

a single hidden layer. Consequence:

Networks are not good
at learning non-linear functions.

But might require very
(like invariant masses!)

large hidden layer

In short:
Can't just throw 4-vectors at NN.

Hidden B Hidden 3

Taken from Daniel Whiteson, Deep Learning in Particle Physics,
ACAT, August 23, 2017

Neural Network Architectures

We take in 4-vectors of events and study the following problems
using NNs.

e prof Z— up
e pr of tt — pp
e Invariant mass of tt — uu

We adjusted these hyperparameters and studied how this affected
accuracy:

e # Nodes

e # Layer
e Activation Function

Finding pr of Z — pp and tt — up

Input Hidden Output
layer layer layer

E of 11
px of 1
py of p1
pz of u1
E of up
px of 2

py of 2

pz of yi2

5/18

Z — pp

We see that with a single layer, we train well.

Cost for 1 layer architecture of prin Z - uu

Log of Cost

Nodes

1 layer with 10 nodes is enough for almost perfect accuracy.

Predicted pr (MeV)

prof Z— uu, 10 Nodes
100000

r=0.999957107541

80000

60000

40000

20000

0 20000 40000 60000 80000 100000
Actual pr (MeV)

Looking at the weights generated for the hidden layer, we find:

e E and p, are given weights of 0

e The weights for p, and p, are symmetric for both muons

Thus neural network is learning a non-linear function of
(Px1 + px2) and (py1 + py2)

18

(o0}

Z — pp

Adding an additional layer provided no increase in accuracy.
However accuracy actually dipped with both softplus and RelLU
activations for when we had a single node in the 2" layer.

This same problem occurs for pr of tt — ppu.

Heatmap using ReLU

nodes in layer 2
5
Log of Cost

1 2 3 4 5 6 7 8 9 10
nodes in layer 1

ReLU and Softplus suffer from having a zero gradient for negative
inputs.

During training, neurons ‘die’ when they get put in a state where
the output 0 for all inputs.

RelLU Softplus

10/18

LeakyReLU was specifically made to fix this.

LeakyRelLU
10

11/18

Z — pp

Thus using LeakyReLU made this problem go away

Dropout may have also worked.

Heatmap using LeakyReLU

nodes in layer 2
5
Log of Cost

1 2 3 4 5 6 7 8 9 10
nodes in layer 1

tt — pp

We see that the same accuracy occurs with tt confirming sample
independence for finding p1 of dimuon production.

pr of tf, 10 Nodes

500000

r=0.99991019276
400000

300000

200000

Predicted pr (MeV)

100000

0 100000 200000 300000 400000 500000
Actual pr (MeV)

13

18

Finding Invariant Mass of tt — uu

Predicted pr (MeV)

As seen before, a single layer with 10 nodes can very
accurately predict pr.

of Z - up, 10 Nodes of tt, 10 Nodes
100000 B L 500000 213
r=0.999957107541 r=0.99991019276
80000 400000
2
60000 £ 300000
4
g
=
2
5
40000 © 200000
a
20000 100000
0 0
0 20000 40000 60000 80000 100000 0 100000 200000 300000
Actual pr (MeV) Actual pr (MeV)

400000

500000

14 /18

Invariant Mass of tt — uu

Using the same neural net architecture (1 layer with 10 nodes,
LeakyReLU) we get a lower accuracy (r = 0.97).
We get a better accuracy with 20 nodes in a single layer

Invariant Mass of tt - iy, Invariant Mass of tt - up,
1 layer with 10 nodes 1 layer with 20 nodes
700000 700000
. ° °
600000 r=0.979531600319 o 600000 r=0.992416725087 o

= 500000 S 500000
))
Py P
& &
= 400000 = 400000
g g
k< §
3 s
g g
< 300000 = 300000
=t =
3 3
o o
5 35
8 8
& 200000 & 200000

100000 100000

0
0 100000 200000 300000 400000 500000 600000 700000 0 100000 200000 300000 400000 500000 600000 700000
Actual Invariant Mass (eV) Actual Invariant Mass (eV)

15/18

Invariant Mass of tt — uu

We finally achieve similar accuracy as pr when given a large
number of nodes in 2 layers.

Invariant Mass of tt - up,

Layer 1: 80 nodes, Layer 2: 80 nodes
700000

600000 r=0.999424983053
i 500000

400000

300000

Predicted Invariant Mass

200000

100000

0
0 100000 200000 300000 400000 500000 600000 700000
Actual Invariant Mass (eV)

16 /18

Invariant Mass of tt — uu

We see little change happening across neural nets when they have
a low number of nodes.

Heatmap Heatmap with large number of nodes

232
192
224 TG
2
180 &
216 S
¥ k)
g
174 §
208
168
200
162

10 20 30 40 50 60 70 80 90 100
nodes in layer 1 #nodes in layer 1

6 7
Log of Cost

a

nodes in layer 2
0 10 20 30 40 50 60 70 8 90 100

nodes in layer 2
5

3

17 /18

Used neural nets for regression of transverse momentum and

invariant mass in two-body systems.

LeakyReLU was used in all neural nets (other activation functions

were experimented with).

A single layer with 9/10 nodes has almost perfect accuracy for

finding p7 (in a certain range) of dimuon production.
Sample-independence for finding pr was shown through tt.

Still trying to understand what features of the mass problem is

causing the issues.

We plan to look into other invariants such as decay angles.

	Introduction
	Finding pT of Z and t
	Finding Invariant Mass of t

