

D-Wave Quantum Computing

Quantum Computing for the Real World Today

Dr. Colin P. Williams
Vice President of Strategy & Corporate Development
D-Wave Systems Inc.

D-Wave's Mission & Activities

Mission

 To solve the world's hardest problems especially in the areas of artificial intelligence and machine learning

Core technologies

- Superconducting annealing-based quantum computers
- Hybrid quantum/classical architectures

Business model

- Quantum computer system sales
- Quantum computer cloud services
- Quantum machine learning services

What are Quantum Computers?

What are Quantum Computers?

Computers that harness quantum physical effects not available to conventional computers

Which Quantum Effects are Used?

Our Approach in Context

- Gate Model (Google, IBM, Intel, Alibaba, Rigetti)
 - Most common approach / based on analogy with Boolean logic circuits
 - Very difficult to scale; requires <u>massive</u> qubit overhead for error correction
- Topological (Microsoft)
 - Like gate model but without need for error correction (in theory)
 - Needs exotic quasi-particle whose robustness is now in dispute (Phys. Rev. Lett., 118, 046801, 26 Jan 2017)
- Annealing (D-Wave, Google, IARPA)
 - Harnesses Nature's ability to find low energy configurations via quantum tunneling
 - Resilient to noise / does not require long coherence times / MIT pedigree
 - Handles a wide range of important problems
 - Currently non-universal but could be made universal

Q. Annealing is Inspired by Adiabatic Theorem of QM ...

• If ...

- Start in ground state of $H_{
 m initial}$
- Change H_{initial} to H_{final} in total time t=T $H(s) = A(s) H_{\text{initial}} + B(s) H_{\text{final}}$
- where $0 \le s = t/T \le 1$

then ...

- System will remain in ground state of all the instantaneous Hamiltonians passed through
- Provided change is made sufficiently slowly

How Long "Ought" the Computation Take?

$$H(s) = A(s) H_{\text{initial}} + B(s) H_{\text{final}}$$
 where $s = t/T$

Quantum Annealing

- AQC: assumes isolation from env. & 0 Kelvin; run slowly once
- QA: assumes coupling to env. & > 0 Kelvin; run quickly and repeat

D-Wave's Quantum Computer

New Product: D-Wave 2000Q[™] (January 2017)

World's Most Advanced Quantum Processor

Superconducting yet made in a CMOS Foundry

\$1B World Class Production Facility

2000-qubit Circuits at 300,000 JJs

.25µm design rules

ASML 193nm lithography 65nm

Problem Machine Solves Natively

• Find a vector of spin values, s, that corresponds to a low value of an energy function, E(s)

$$\underset{s_{1},\cdots,s_{n}}{\operatorname{argmin}}\,E(\mathbf{s}) \qquad E(\mathbf{s}) = \sum_{i} h_{i} s_{i} + \sum_{i,j \in \mathcal{Z}} J_{i,j} s_{i} s_{j}, \quad s_{i} = \pm 1$$

$$\text{Local Biases} \qquad \text{Couplings}$$

easily mapped to a 0/1 variables via $s_i = 2 x_i - 1$

 Energy values close to Boltzmann distributed (end of anneal) or close to quantum Boltzmann distributed (mid-anneal)

Functional Quantum Computation Established

- Papers show superposition, entanglement & co-tunneling
 - Johnson et al., "Q. Annealing with Manufactured Spins," Nature 473, 194-198, 12th May (2011).
 - T. Lanting et al., "Cotunneling in pairs of coupled flux qubits," Phys. Rev. B 82, 060512(R) (2010).
 - T. Lanting et al., "Entanglement in a Q. Annealing Processor," Phys. Rev. X 4, 021041 (2014).
- These quantum effects play a functional role in the computations
 - Boixo, et al., "Computational multiqubit tunneling in programmable quantum annealers," Nature Communications 7, Article number: 10327, Published 07 January (2016).
- UCL/USC showed that none of the classical models so far proposed as explanations for the D-Wave machine are correct
 - Albash et al., "Consistency Tests of Classical and Quantum Models for a Quantum Annealer," Phys. Rev. A 91, 042314, Published 13 April (2015).
- USC & D-Wave showed q. annealing can occur successfully on timescales orders
 of magnitude longer than the coherence time
 - Albash et al., "Decoherence in adiabatic quantum computation," Phys. Rev. A 91, 062320 (2015).
 - N G Dickson et al. "Thermally assisted quantum annealing of a 16-qubit problem", Nature Communications 4, Article number: 1903, 21 May (2013).

Why is Quantum Computing Exciting?

Potential for Massive Speedups

See "What is the Computational Value of Finite Range Tunneling?" arXiv:1512.02206v3

- Google found D-Wave 2X was 100,000,000x faster than QMC and SA on a particular problem (their "quantumess" test)
- More competitive algorithms beco as we move to connectivity chi
- Apparent parall QMC & D-Wave (see E. Andriyash et al. "Cai

arXiv:1703.09277)

Potential for Faster & Better (Lower Energy) Sampling

Quantum Sampling Accelerates Probabilistic ML

D. Korenkevych et al., "Benchmarking Quantum Hardware for Training of Fully Visible Boltzmann Machines," arXiv:1611.04528

Goal

 Compare rate of learning of a fully visible probabilistic graphical model classically vs. quantumly

Procedure

- Specify model parameters $\theta_{\rm true}$, draw exact Boltzmann samples from $\theta_{\rm true}$, and estimate θ from samples
- Compare efficacy of CD, PCD, and QAseeded MCMC chains at estimating the true distribution

Model to Learn

Result: Quantum Learns Faster

Why Probabilistic Machine Learning Matters

What Current A.I. Doesn't Do Well

"Unsupervised learning had a catalytic effect in reviving interest in deep learning, but has since been overshadowed by the successes of purely supervised learning. [...] we expect unsupervised learning to become far more important in the longer term. Human and animal learning is largely unsupervised: we discover the structure of the world by observing it, not by being told the name of every object."

Yann LeCun, Yoshua Bengio & Geoffrey Hinton, "Deep Learning," Nature, Vol. 521, 28th May (2015)

• A.I. is not yet sufficiently good at UNSUPERVISED learning

Quantum Computers Can Help

- Unsupervised learning can use probabilistic models
- These rely on sampling
- Quantum computers have potential to revolutionize A.I. by making unsupervised learning models feasible to train efficiently
- Because quantum computers are fast native samplers

How does Sampling Arise in Probabilistic Models?

- Consider a Restricted Boltzmann Machine (RBM)
- RBMs can be components of more complex neural networks

What does Training Entail? Discrete Sampling!

- Given training data (visible vectors) v_t s.t. $1 \le t \le T$
- Adjust model parameters s.t. model most likely reproduces the training data
- Done by maximizing the log-likelihood of the observed data distribution w.r.t. the model parameters, θ_i

$$\frac{\P \overset{\mathcal{R}}{\text{Q}} \overset{T}{\text{Q}} \overset{\circ}{\text{Q}} \log(p(\mathbf{v}_t)) \overset{\circ}{\text{Q}} = -\overset{T}{\text{Q}} \left\langle \frac{\P}{\P q_i} E(\mathbf{v}_t, \mathbf{h}) \right\rangle_{p(\mathbf{h} \mid \mathbf{v}_t)} + T \left\langle \frac{\P}{\P q_i} E(\mathbf{v}, \mathbf{h}) \right\rangle_{p(\mathbf{v}, \mathbf{h})}$$

where $\theta = \{b_i\} \cup \{c_i\} \cup \{W_{ij}\}$

- Positive Phase
- Expectation over $p(\mathbf{h}|\mathbf{v}_t)$ in "clamped" condition
- Requires sampling over the (given) data distribution
- Simple!

- Negative Phase
- Expectation over p(v, h) in "unclamped" condition
- Requires sampling over the (predicted) model distribution
- Intractable!

Discrete Sampling in Complex Architectures (DVAE/QVAE)

- Real data has discrete & continuous variables
- Natural to want discrete hidden variables
- Can't backpropagate through discrete variables
- DVAE solves this problem
 - See J. Rolfe, "Discrete Variational Autoencoders", arXiv:1609.02200
- Exceeds state of the art on three standard machine learning datasets
- DVAE (classical) / QVAE (quantum)

DVAE Exceeds State-of-the-Art on a Generative Task

J. Rolfe, "Discrete Variational Autoencoders", arXiv:1609.02200 [stat.ML]

NEW! D-Wave Web Services for Probabilistic Machine Learning

 D-Wave web services are designed to make it easier to train PML models

Capabilities

- Learns from noisy / incomplete data
- Quantifies confidence in predictions
- Balances knowns versus unknowns
- Reveals hidden correlations in data
- Infers missing data

Functionality (Web Services for PML):

- Classical Boltzmann sampling (GPU)
- Quantum Boltzmann sampling (CPU)
- Raw QPU sampling (QPU)
- Supports both ML/QML models
- Called from TensorFlow or Python

Conclusions

Contact: cpwilliams@dwavesys.com

- Quantum computing will turbo-charge unsupervised learning
- · Quantum and hybrid machine learning models already running
- New (classical) sampling services will be released in 2017
 - Reinvigorate probabilistic machine learning and prepare ground for future quantum & hybrid ML services
 - Available today (classically) / faster tomorrow (quantumly)
- DVAE already surpassing state of the art / QVAE coming in 2018
- Seeking users for sampling services & probabilistic machine learning models that use them via the cloud

Thank you!
Email: cpwilliams@dwavesys.com

