

ACAT Track 2 Summary Sergei Gleyzer

University of Florida

August 25, 2017

Statistics

- 33 talks
- 26 posters
- 13 collaborations represented
 - ALPHA, ATLAS, Belle II, BESIII, CMS,
 Dune, DZero, IceCube, JUNO, LHCb,
 MicroBooNE, Opera, PANDA

Topics

Algorithms and applications

 Physics, object id, reconstruction, tracking, trigger, simulation

Analysis Tools

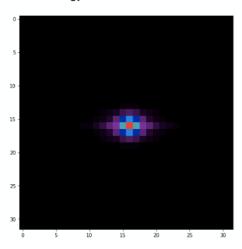
-General, Simulation, Fitting, ML, Visualization, Preservation

Machine Learning

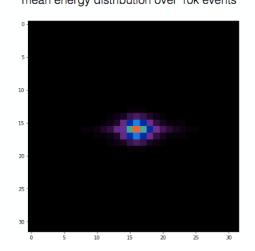
Convolutional Neural Networks

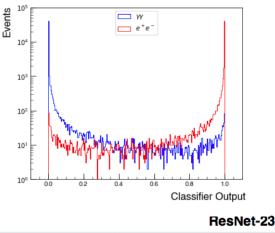
By-passing traditional reconstruction

Photon-Induced EM Shower mean energy distribution over 10k events



Electron-Induced EM Shower mean energy distribution over 10k events



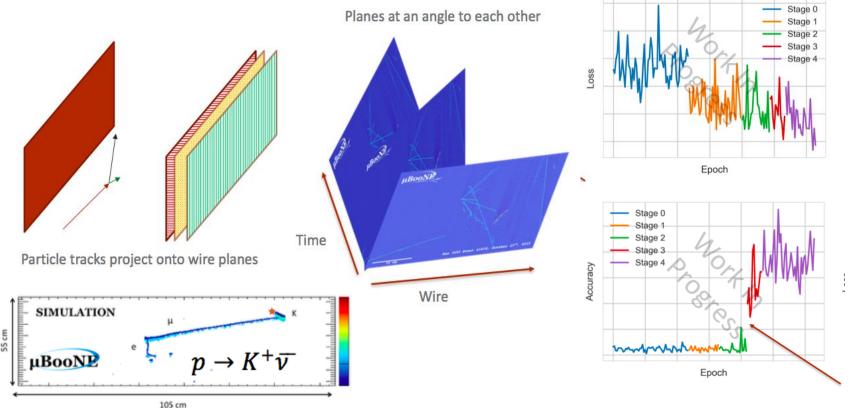


Test Set ROC AUC 0.997

Talk by M. Andrews

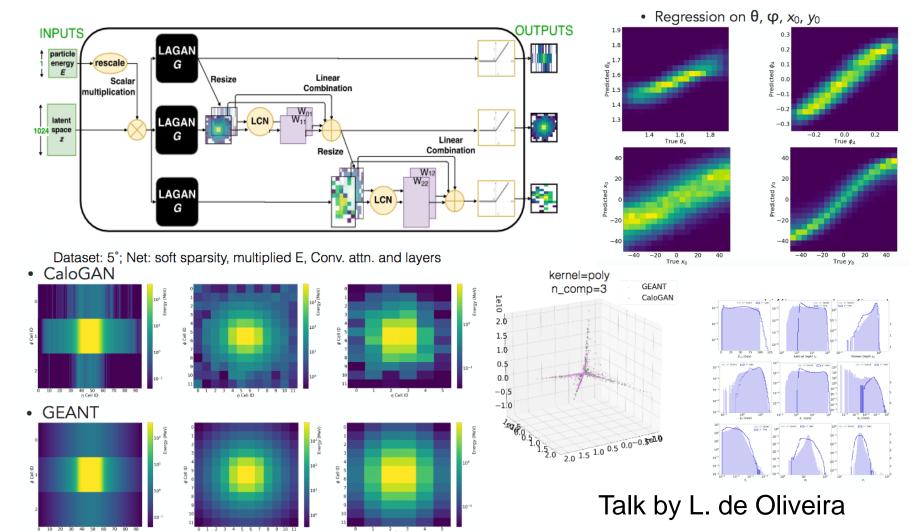
Neutrinos

Convolutional NNs in µBooNE



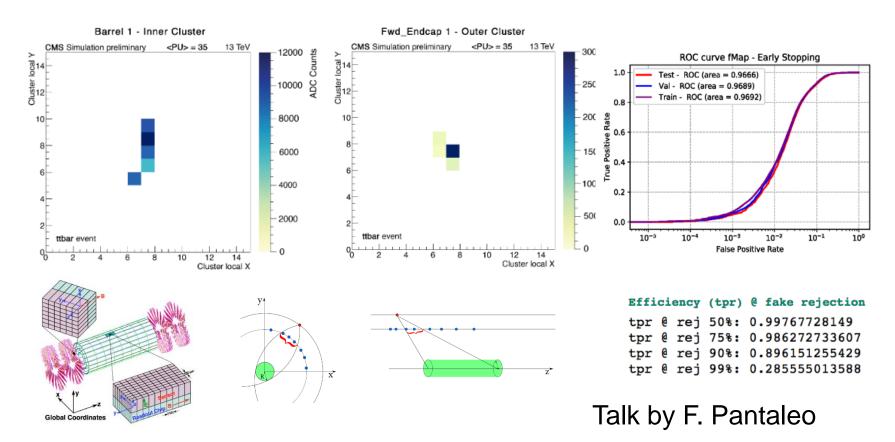
Talk by K. Wierman

Simulation GANs



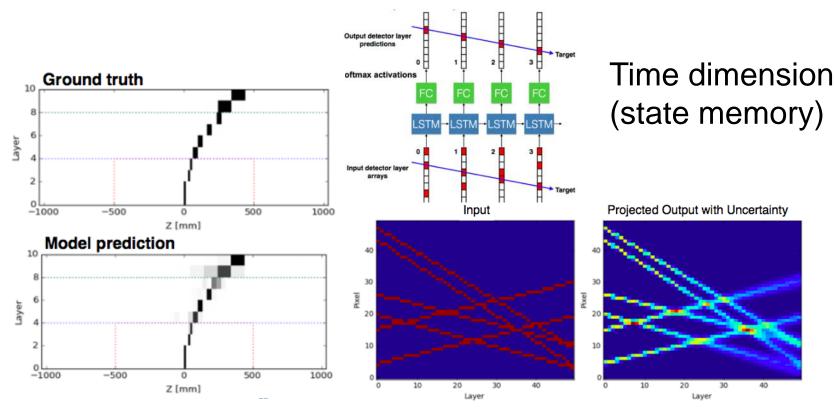
Tracking

CNNs for track seeding at CMS HLT



HEP.TrkX

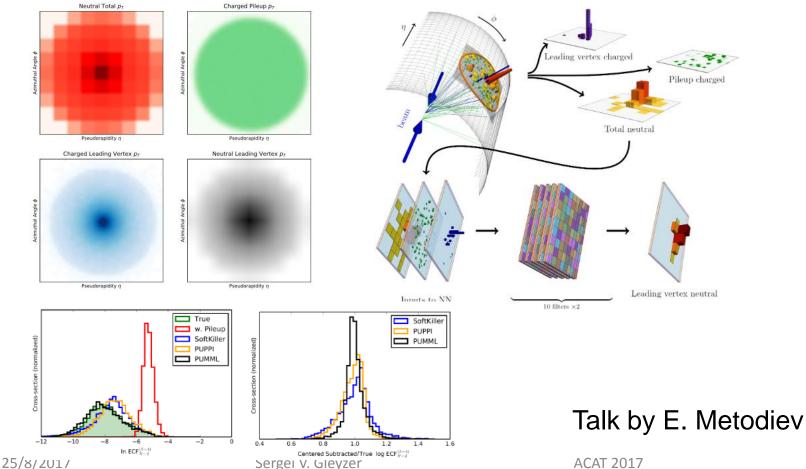
Recurrent networks for tracking



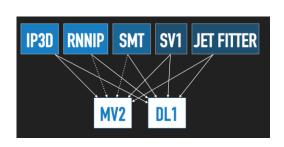
Talk by A. Tsaris

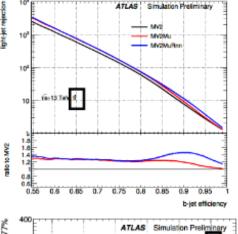
Pileup Removal

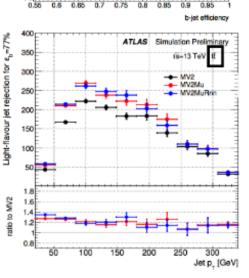
Convolutional NNs with images

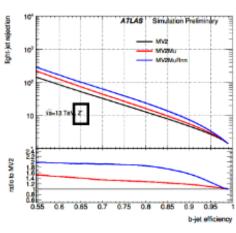


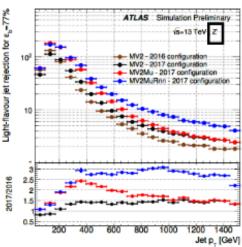
ATLAS B Tagging



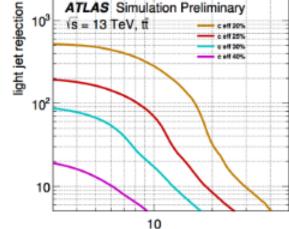








Talk by M. Paganini



ATLAS Simulation Preliminary

(s = 13 TeV, tt

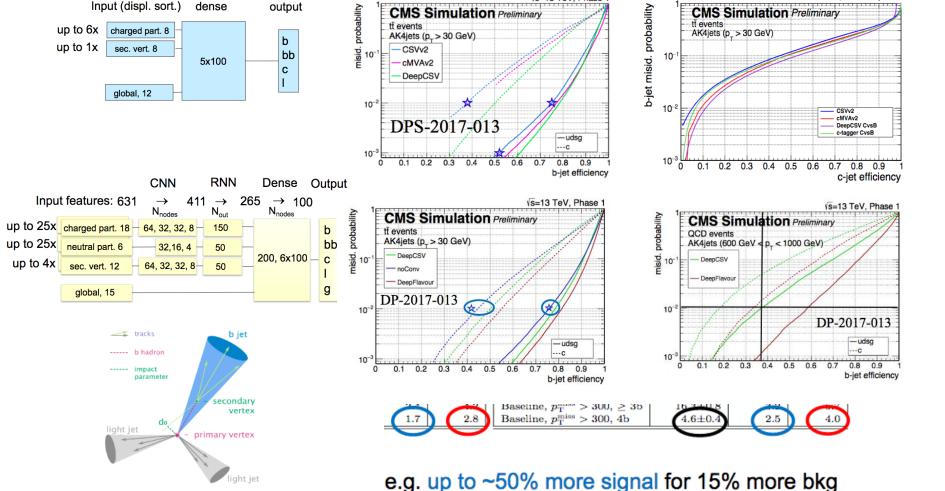
b jet rejection

e off 40%

CMS Flavor Tagging

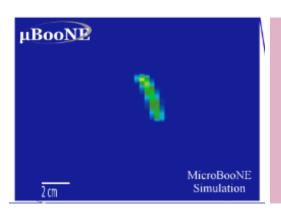
√s=13 TeV. Phase 1

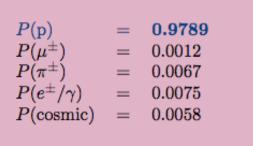
√s=13 TeV, 2016



Talk by M. Stoye
Sergei V. Gleyzer ACAT 2017 ACAT 2017 12

MicroBooNE XGBoost





Boosting and the XGBoost^[3] algorithm

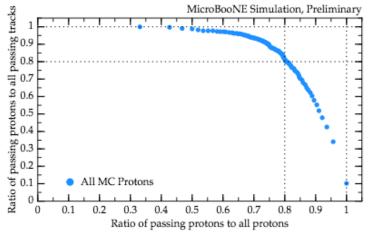
Gradient-Boosting:

• The loss function, l at tree t is

$$l(y_i, \hat{y}_i^{(t-1)} + f_t(\mathbf{x}_i))$$

- the difference between the true label (y_i) and the prediction of the existing ensemble $(\hat{y}_i^{(t-1)})$ plus the output of the new tree $(f_t(\mathbf{x}_i))$
- To simplify the computation, use the second-order approximation:

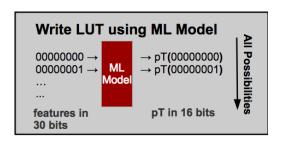
$$\begin{split} l(y_i, \hat{y}_i^{(t-1)} + f_t(\mathbf{x}_i)) &\approx l(y_i, \hat{y}_i^{(t-1)}) \\ &+ \frac{\partial \ l(y_i, \hat{y}_i^{(t-1)})}{\partial \ \hat{y}^{(t-1)}} f_t(\mathbf{x}_i) + \frac{1}{2} \frac{\partial^2 \ l(y_i, \hat{y}_i^{(t-1)})}{\partial^2 \ \hat{y}^{(t-1)}} f_t^2(\mathbf{x}_i) \end{split}$$

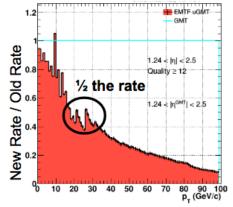


Talk by K. Woodruff

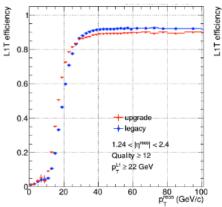
UF Trigger Applications

CMS L1



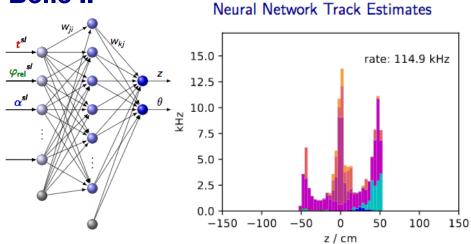


TwoPhoton



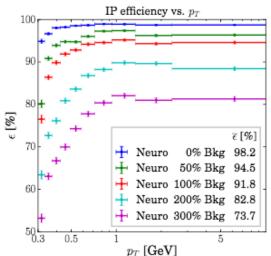
Talk by A. Carnes

Belle II



Touschek Coulomb

BhabhaM

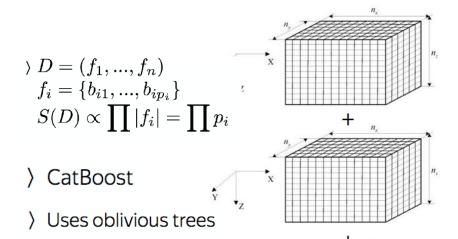


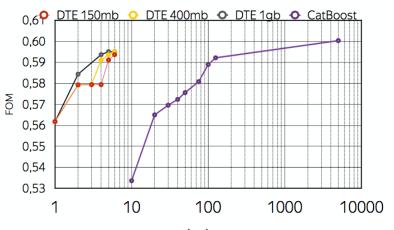
Talk by S. Skambraks

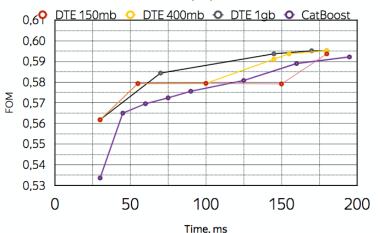
Trigger Applications

LHCb

Discretize features

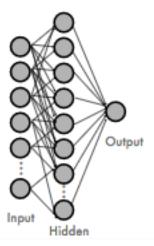






Talk by A. Ustyuzhanin

Learning Features



Problem:

Networks with > 1 layer are very difficult to train.

Consequence:

Networks are not good at learning non-linear functions. (like invariant masses!)

In short:

Can't just throw 4-vectors at NN.

Invariant Mass of ξξ + μμ.

1 layer with 10 nodes

r=0,979531600319

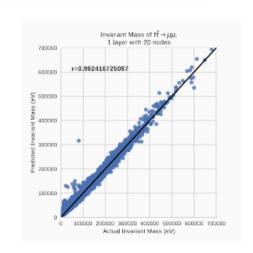
400000

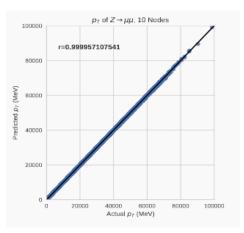
100000

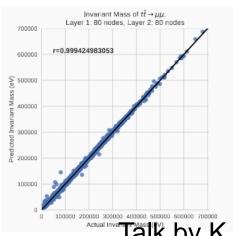
100000

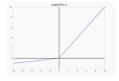
100000

Actual Invariant Mass (eV)









Talk by K. Chitturi

Analysis Tools

ROOT

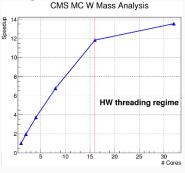
Conclusion - Main Evolution Items

- I/O: LZ4, vectorized zlib; TTree merging
- Parallelization: math, I/O, analysis
- Vectorization: math, user interfaces
- Math: see above, plus RooFit, TMVA with GNN, RNN
- Graphics: using web technology

Talk by A. Naumann

TDataFrame: Declarative Analysis

- New way to interact with ROOT columnar data format
 - Inspiration from Pandas, Spark, and others
 - Similar ideas proposed in the past (e.g. LINQToROOT by G. Watts)
- Analysis is a graph of:
 - Transformations: filter, add a column, ...
 - Actions: Fill an histogram, a profile, count events, ...
- Specify what you want and let ROOT choose how
 - Computation triggered lazily
 - Several optimisations (e.g. partitioning, caching, reordering, parallelisation)



Talk by G. Amadio

DIANA: Histogrammar

- Spark manages concurrency (no event loop)
- Histogrammar designed for map-reduce environment
 - Functional interface
 - Fill histograms by passing lambda functions
 - Same as transformations in Spark
 - Histogrammar fills histogram data structures -> afterwards convert into favorite plotting tool

histo-grammar

MAKING HISTOGRAMS FUNCTIONAL

ROOT:

```
histogram = ROOT.TH1F("name", "title", 100, 0, 10)
for muon in muons:
    if muon.pt > 10:
        histogram.fill(muon.mass)
```

Histogrammar:

```
histogram = Select(lambda mu: mu.pt

Bin(100, 0, 10, lam

Count()))

for muon in muons:

histogram.fill(muon)
```

Talk by O. Gutsche http://histogrammar.org

More Tools

GooFit 2.0

Matex

Vispa

CatBoost

Rift

RECAST

Fitting

Deep learning

Deep learning

Gradient Descent

VR

Re-interpretation

Summary

- Excellent sessions
- State of ML in HEP
- Thanks to all the presenters and attendees