
TRANSFER LEARNING IN ASTRONOMY: 
A NEW MACHINE LEARNING PARADIGM

• What is Transfer Learning? 

• What is Domain Adaptation? 

• A Case Study in Supernova Ia Classification



Motivation for transfer learning

• The goal is to transfer knowledge gathered from previous 

experience.

• Also called Inductive Transfer or Learning to Learn. 

Once a predictive model is built, there are reasons to believe the

model will cease to be valid at some point in time.
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TRANSFER LEARNING 

Scenarios:

1. Labeling in a new domain is costly. 

DB1 (labeled)

Classification of Cepheids
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Classification of Long Period 

Variable Stars LPV



TRANSFER LEARNING 

Scenarios:

2. Data is outdated. Model created with one survey but

a new survey is now available. 

Survey 1

Learning 

System

Survey 2

?



MULTITASK LEARNING:
Train in Parallel with Combined Architecture

Figure obtained from Brazdil, et. Al. Metalearning: Applications to Data Mining, Chapter 7,  Springer, 2009.



KNOWLEDGE OF PARAMETERS 

Assume prior distribution of parameters
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KNOWLEDGE OF PARAMETERS 

Find coefficients ws using SVMs

Find coefficients wT using SVMs

initializing the search with ws



FEATURE TRANSFER

Identify common

Features to all tasks
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DOMAIN ADAPTATION 
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DOMAIN ADAPTATION
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DOMAIN ADAPTATION 
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COVARIATE SHIFT
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Covariate Shift:  

PS(X) ≠ PT(X) , PS(Y|X) = PT(Y|X) 
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INSTANCE BASED METHODS

Target Class 1

Target Class 2



FEATURE-BASED METHODS

When source instances cannot represent the target distribution at all in 

the parameter space, we can project source and target  datasets to 

common feature space (i.e., we can align both datasets).



ASSUMPTIONS DOMAIN ADAPTATION 
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ACTIVE LEARNING 
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ACTIVE LEARNING 
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ACTIVE LEARNING 
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ACTIVE LEARNING 
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ACTIVE LEARNING 
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ACTIVE LEARNING 
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DOMAIN ADAPTATION + ACTIVE LEARNING
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SOURCE AND TARGET USING 
SUPERNOVA DATASETS

• Spectroscopy

• Enable parameter inference from astronomical data 

• determine the presence of individual chemical elements 

(spectral lines) 

• infer the distance (redshift) to extragalactic sources

• Expensive and time-consuming process

• Unfeasible to obtain measurements for all cataloged objects

• Photometry:

• Low resolution counterpart

• Summarize the intensity of electromagnetic radiation in a handful 

of broad wavelength windows (filters).

• Information on individual spectral lines is not accessible.



OVERVIEW  

Active Learning

Automatic SN Classification Using 

Machine Learning

Training data labeled through spectroscopy

Test data obtained through photometry

Domain Adaptation



SAMPLE SELECTION BIAS
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Main assumption in supervised learning is not warranted



AUTOMATED CLASSIFICATION OF SUPERNOVA IA

How can we take advantage of existing supernova datasets 

already classified using spectroscopy to develop an automated 

classification method using new photometric surveys?



EXPERIMENTAL SETUP 

35

• Data  Acquisition:

• Simulated data stemming from the Supernova Photometric 

Classification Challenge, traditionally called post-SNPCC 

• Mimic the characteristics of Dark Energy Survey (DES) data

• Select only objects having at least 3 observed epochs per filter, with 

at least 1 of them being before -3 days and at least 1 after +24 days 

since maximum brightness. 

• In each filter, light curve fitting is performed using Gaussian 

process regression, and the resulting function is sampled with a 

window of 1 day. No quality cuts are imposed (SNR>0).

• Datasets:

• Source Dataset  - Labeled (Photometric) 

• Test Dataset – Unlabeled (Spectroscopic) 



EXPERIMENTAL SETUP 

• Dimensionality Reduction :

• Original : 108 Features

• For this research : 20 Features, reduced by KPCA

• Active Learning : 

• 50% Pool,  50% Test

• 10 Pairs

• 10 Runs



RESULTS: ACCURACY AND PURITY

Accuracy and Precision on Target Data using Domain Adaptation and Active Learning.



THANK YOU! 


