Round table discussion

Analytical vs. numerical methods for NNLO+ computations for LHC
Analytical vs. Numerical

Numerical methods:
- Sector decomposition
- Mellin integral
- Differential equation
- Direct computation method

Analytical methods?
To keep diversity, I will go for the 'maximally' analytical way
Analytical vs. Numerical

Numerical methods:
- Sector decomposition
- Mellin integral
- Differential equation
- Direct computation method (‘maximally’ numerical)

...
Analytical vs. Numerical

Numerical methods:
 Sector decomposition
 Mellin integral
 Differential equation
 Direct computation method (‘maximally’ numerical)

...

Analytical methods?
Analytical vs. Numerical

Numerical methods:
 Sector decomposition
 Mellin integral
 Differential equation
 Direct computation method (‘maximally’ numerical)
 ...

Analytical methods?
 To keep diversity, I will go for the ‘maximally’ analytical way
Maximally analytical method?

(I was told that) any loop integrals can be expressed by GKZ-hypergeometric functions [Gel'fand, Graev, Zelevinski˘ı] (but not sure how it works).
Maximally analytical method?

(I was told that) any loop integrals can be expressed by GKZ-hypergeometric functions (but not sure how it works)

[Gel’fand, Graev, Zelevinskii]
Maximally analytical method?

(I was told that) any loop integrals can be expressed by GKZ-hypergeometric functions (but not sure how it works) [Gel'fand, Graev, Zelevinskii]

Once Wolfram implements such functions and ϵ-expansions

\begin{verbatim}
In[1]:= Series[GKZHypergeometricFunction[{1+ep,...},...], {ep, 0, 6}]
Out[1]= 1/ep + GKZPolyLog[{1,...},...] + ...
In[2]:= % // Normal // N
Out[2]= 1/ep + 1.39446 + ...
\end{verbatim}

(Scientific fiction)

Done! We will lose our jobs
Maximally analytical method?

(I was told that) any loop integrals can be expressed by GKZ-hypergeometric functions (but not sure how it works) [Gel'fand, Graev, Zelevinskiĭ]

Reality: up to MPL. Still we have jobs

Mathematica 11.0.1 for Linux x86 (64-bit)
Copyright 1988-2016 Wolfram Research, Inc.

In[1]:= ?SpecialFunctions`*
SpecialFunctions`BernoulliBModPrime
SpecialFunctions`BesselKRatio
SpecialFunctions`BesselPolynomialY
SpecialFunctions`ChebyshevV
SpecialFunctions`ChebyshevW
SpecialFunctions`ClearMathieuCache
SpecialFunctions`FunctionExpandHarmonicPolyLog
SpecialFunctions`GammaOver24
SpecialFunctions`GammaR
SpecialFunctions`GammaRatio
SpecialFunctions`GammaS
SpecialFunctions`HarmonicPolyLog

SpecialFunctions`InverseGammaApprox
SpecialFunctions`InverseLogGammaApprox
SpecialFunctions`MultipleFiniteHarmonicSumS
SpecialFunctions`MultiplePolyLog
SpecialFunctions`MultipleZetaValue
SpecialFunctions`Probit
SpecialFunctions`QHypergeometricPFQPolynomial
SpecialFunctions`ShuffleProductExpand
SpecialFunctions`SphericalHarmonicYTriangularArray
SpecialFunctions`StuffleProductExpand
SpecialFunctions`UnderOverflowedQ
How far can we go?

In these two decades, many problems have been successfully solved with harmonic/multiple polylogarithms
How far can we go?

In these two decades, many problems have been successfully solved with harmonic/multiple polylogarithms

What’s the next?
How far can we go?

In these two decades, many problems have been successfully solved with harmonic/multiple polylogarithms. What’s the next? Elliptic generalizations? Or...?
ML for Feynman integrals?

Many presentations with ML in ACAT 2017
ML for Feynman integrals?

Many presentations with ML in ACAT 2017

Speculative/wishful idea: ML also for Feynman Integrals?
ML for Feynman integrals?

Many presentations with ML in ACAT 2017

Speculative/wishful idea: ML also for Feynman Integrals?

Example: Integration-by-parts reduction ‘IBP mining’ for reduction rules: to find good linear combinations?