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Belle/Belle II Experiment
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Asymmetric 𝖾+𝖾−
experiment mainly at

the Υ(4𝑆) resonance
(10.58GeV)

Focus on 𝖡, charm and

𝜏 physics

KEKB/Belle SuperKEKB/Belle II

operation 1999–2010 start 2018

peak luminosity 2.11 × 1034 cm−2s−1 8 × 1035 cm−2s−1

integrated luminosity 1023 fb−1 (772 million BB pairs) 50 ab−1



Conditions Data
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Conditions Data: changes over time, not part of

event

▶ luminosity

▶ detector status

▶ calibrations

▶ reconstruction settings

Challenges:

▶ required for data taking

▶ required worldwide for grid/cloud processing

▶ vastly different lifetimes/sizes

▶ different requirements by different

sub-detectors

Terms

payload is one atom of conditions data

(e.g. alignment constants)

IOV is short for “interval of validity”, the

time interval in which a payload is valid

global tag is an immutable set of payloads and

their IOVs.

time

payload #3
payload #2
payload #1
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Design Overview
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▶ use industry standard tools where possible

▶ decouple metadata from content

▶ use REST service for metadata

▶ use files for payloads

▶ smallest granularity: 1 run

(uninterrupted period of data taking,

up to a few hours)

REST interface greatly decouples server/client

development

Very low requirements, only connect to http(s)

request metadata
(http)

return 
payload info
(json/xml)

check local cache

download missing
payloads

(http)

start data
processing



Server Side
Lynn Wood, Todd Elsethagen, Kevin Fox, Jeter Hall,

Bibi Raju, Malachi Schram, Eric Stephan



Current Back-End Configuration

M. Ritter, L. Wood et al. Belle II Conditions Database Overview 6 / 15ACAT2017 — August 22, 2017

two separate services:

▶ left: DB access/file upload

▶ right: payload file download

Database Server

▶ Squid cache in front of REST application

server to reduce load

▶ Payara Micro Java server

▶ Hazelcast in-memory data grid platform for

caching and stability

Payload server

▶ Load-balanced NGINX high performance HTTP servers

Each component is implemented as a Docker container managed using Kubernetes – provides

modularity and auto-restart



Performance of Current System
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Directed testing with Gatling, a

HTTP load stress tool

▶ Scala scripting for custom

test design

Database server performance

dependent on Squid, Java config

Payload file server

(load-balanced x3) very stable

Current performance about

half of needed levels at full

expected Belle II processing.

Stress test of the database server, showing a sustained rate of ∼ 80 requests/second

Stress test of the payload file server, showing a sustained rate of
∼ 180 requests/second and support of 10,000 simultaneous connections



Multi-Site Caching via Hazelcast
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▶ Currently all Conditions DB services are installed on a single

PNNL-managed host

▶ Hazelcast provides standalone caching store to improve
service performance

▶ Data is evenly distributed among the nodes
horizontal scaling of processing and storage

▶ Backups also distributed among nodes
protect against single-node failure

▶ Each site also supports a dedicated “local cache” for commonly
requested items

▶ Evaluating multi-site system at PNNL now
▶ Hazelcast would auto-cluster sites as they come online
▶ Cache distributed/partitioned across the memory resources (Java heap) contributed by each site
▶ Access to partitioned cache would be transparent to the application: Hazelcast manages routing, no
code changes for distributed access

▶ Frequently accessed remote cache entries will be stored in a “Near Cache”



Database Replication and Authentication
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The PostgreSQL database also not currently scalable

▶ Investigating distributed database options such as
CockroachDB

▶ Symmetric node architecture, horizontal scalability per site
▶ Distributed transactions, majority consensus for consistent
replication

▶ Automated repair after failure

Authentication currently not implemented

▶ Expectation is to leave read operations open, but require

authentication for write operations

▶ Considering leveraging the X.509 authentication already

present in the Belle II Grid computing interface

▶ Create new roles for database



Client Side
Martin Ritter, Thomas Kuhr, Christian Pulvermacher



Client Side
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Belle II Software Framework

▶ C++14, ROOT 6

▶ Python 3 configuration/scripting

▶ Multi processing capabilities

use ROOT files for conditions payloads

▶ users obtain reference to payload by name

▶ framework will obtain payload information

▶ handle updates transparently

▶ users can check/be notified on changes

allow operation without connectivity

▶ read payload information from file.

▶ allow downloading of (partial) database



Payload Information and Distribution
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Allow cascade of payload information providers

▶ testing of new payloads locally

▶ additional analysis-specific payloads (e.g. training-data)

Payloads as files allows for flexible payload delivery

▶ trivial caching in file system

▶ various distribution possibilities could be investigated

(cvmfs, key-value stores, pack-files, …)

▶ hybrid solutions possible (e.g. only some payloads on

cvmfs)

▶ http as reliable fallback

Intra Run Dependency

Some conditions data might change

more frequently than per run

▶ payload will contain multiple

objects

▶ handled transparently on client side



Command Line Interface
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REST interface makes implementation of clients

very easy

▶ libcurl for C/C++ client in the software

framework

▶ requests library for Python

▶ large amount of standard tools

User friendly command line interface

▶ pure python

▶ inspect/modify database contents

▶ e.g. compare global tags

b2conditionsdb diff tag1 tag2

Python Requests

#!/usr/bin/env python3.6
import requests
BASE_URL = "http://..."
globalTag = "development"
r = requests.get(f"{BASE_URL}/globalTag/"

"{globalTag}/payloads")
r.raise_for_status()
for payload in r.json():

print(payload["checksum"])



Conclusions
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Belle II Conditions Database

▶ leverage existing tools where possible

▶ REST: easy, well defined interface between

client and server

Server

▶ payload content agnostic web service

▶ implemented using industry tools

▶ single server setup at half the expected

performance

Client

▶ use ROOT files as payloads

▶ automatic updates, “offline” mode

▶ independent command line client

Additional Details

Two Posters today

▶ Implementing the Belle II Conditions

Database using Industry-Standard Tools

(L. Wood et al.)

▶ Belle II Conditions Database Interface

(M. Ritter et al.)
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for your attention


