
Belle II Conditions Database Overview

Martin Ritter1, Lynn Wood2,

Server: Todd Elsethagen2, Kevin Fox2, Jeter Hall2, Bibi Raju2, Malachi Schram2, Eric Stephan2

Client: Thomas Kuhr1, Christian Pulvermacher3

1Ludwig-Maximilians-University (LMU), Munich
2Pacific Northwest National Laboratory (PNNL), Richland

3High Energy Accelerator Research Organization (KEK), Japan

18th International Workshop on Advanced Computing and

Analysis Techniques in Physics Research

August 22, 2017



Belle/Belle II Experiment

M. Ritter, L. Wood et al. Belle II Conditions Database Overview 2 / 15ACAT2017 — August 22, 2017

Asymmetric 𝖾+𝖾−
experiment mainly at

the Υ(4𝑆) resonance
(10.58GeV)

Focus on 𝖡, charm and

𝜏 physics

KEKB/Belle SuperKEKB/Belle II

operation 1999–2010 start 2018

peak luminosity 2.11 × 1034 cm−2s−1 8 × 1035 cm−2s−1

integrated luminosity 1023 fb−1 (772 million BB pairs) 50 ab−1



Conditions Data

M. Ritter, L. Wood et al. Belle II Conditions Database Overview 3 / 15ACAT2017 — August 22, 2017

Conditions Data: changes over time, not part of

event

▶ luminosity

▶ detector status

▶ calibrations

▶ reconstruction settings

Challenges:

▶ required for data taking

▶ required worldwide for grid/cloud processing

▶ vastly different lifetimes/sizes

▶ different requirements by different

sub-detectors

Terms

payload is one atom of conditions data

(e.g. alignment constants)

IOV is short for “interval of validity”, the

time interval in which a payload is valid

global tag is an immutable set of payloads and

their IOVs.

time

payload #3
payload #2
payload #1

rev.1 rev.3
rev.1 rev.2

rev.1 rev.1rev.2

global tag

IOV



Design Overview

M. Ritter, L. Wood et al. Belle II Conditions Database Overview 4 / 15ACAT2017 — August 22, 2017

▶ use industry standard tools where possible

▶ decouple metadata from content

▶ use REST service for metadata

▶ use files for payloads

▶ smallest granularity: 1 run

(uninterrupted period of data taking,

up to a few hours)

REST interface greatly decouples server/client

development

Very low requirements, only connect to http(s)

request metadata
(http)

return 
payload info
(json/xml)

check local cache

download missing
payloads

(http)

start data
processing



Server Side
Lynn Wood, Todd Elsethagen, Kevin Fox, Jeter Hall,

Bibi Raju, Malachi Schram, Eric Stephan



Current Back-End Configuration

M. Ritter, L. Wood et al. Belle II Conditions Database Overview 6 / 15ACAT2017 — August 22, 2017

two separate services:

▶ left: DB access/file upload

▶ right: payload file download

Database Server

▶ Squid cache in front of REST application

server to reduce load

▶ Payara Micro Java server

▶ Hazelcast in-memory data grid platform for

caching and stability

Payload server

▶ Load-balanced NGINX high performance HTTP servers

Each component is implemented as a Docker container managed using Kubernetes – provides

modularity and auto-restart



Performance of Current System

M. Ritter, L. Wood et al. Belle II Conditions Database Overview 7 / 15ACAT2017 — August 22, 2017

Directed testing with Gatling, a

HTTP load stress tool

▶ Scala scripting for custom

test design

Database server performance

dependent on Squid, Java config

Payload file server

(load-balanced x3) very stable

Current performance about

half of needed levels at full

expected Belle II processing.

Stress test of the database server, showing a sustained rate of ∼ 80 requests/second

Stress test of the payload file server, showing a sustained rate of
∼ 180 requests/second and support of 10,000 simultaneous connections



Multi-Site Caching via Hazelcast

M. Ritter, L. Wood et al. Belle II Conditions Database Overview 8 / 15ACAT2017 — August 22, 2017

▶ Currently all Conditions DB services are installed on a single

PNNL-managed host

▶ Hazelcast provides standalone caching store to improve
service performance

▶ Data is evenly distributed among the nodes
horizontal scaling of processing and storage

▶ Backups also distributed among nodes
protect against single-node failure

▶ Each site also supports a dedicated “local cache” for commonly
requested items

▶ Evaluating multi-site system at PNNL now
▶ Hazelcast would auto-cluster sites as they come online
▶ Cache distributed/partitioned across the memory resources (Java heap) contributed by each site
▶ Access to partitioned cache would be transparent to the application: Hazelcast manages routing, no
code changes for distributed access

▶ Frequently accessed remote cache entries will be stored in a “Near Cache”



Database Replication and Authentication

M. Ritter, L. Wood et al. Belle II Conditions Database Overview 9 / 15ACAT2017 — August 22, 2017

The PostgreSQL database also not currently scalable

▶ Investigating distributed database options such as
CockroachDB

▶ Symmetric node architecture, horizontal scalability per site
▶ Distributed transactions, majority consensus for consistent
replication

▶ Automated repair after failure

Authentication currently not implemented

▶ Expectation is to leave read operations open, but require

authentication for write operations

▶ Considering leveraging the X.509 authentication already

present in the Belle II Grid computing interface

▶ Create new roles for database



Client Side
Martin Ritter, Thomas Kuhr, Christian Pulvermacher



Client Side

M. Ritter, L. Wood et al. Belle II Conditions Database Overview 11 / 15ACAT2017 — August 22, 2017

Belle II Software Framework

▶ C++14, ROOT 6

▶ Python 3 configuration/scripting

▶ Multi processing capabilities

use ROOT files for conditions payloads

▶ users obtain reference to payload by name

▶ framework will obtain payload information

▶ handle updates transparently

▶ users can check/be notified on changes

allow operation without connectivity

▶ read payload information from file.

▶ allow downloading of (partial) database



Payload Information and Distribution

M. Ritter, L. Wood et al. Belle II Conditions Database Overview 12 / 15ACAT2017 — August 22, 2017

Allow cascade of payload information providers

▶ testing of new payloads locally

▶ additional analysis-specific payloads (e.g. training-data)

Payloads as files allows for flexible payload delivery

▶ trivial caching in file system

▶ various distribution possibilities could be investigated

(cvmfs, key-value stores, pack-files, …)

▶ hybrid solutions possible (e.g. only some payloads on

cvmfs)

▶ http as reliable fallback

Intra Run Dependency

Some conditions data might change

more frequently than per run

▶ payload will contain multiple

objects

▶ handled transparently on client side



Command Line Interface

M. Ritter, L. Wood et al. Belle II Conditions Database Overview 13 / 15ACAT2017 — August 22, 2017

REST interface makes implementation of clients

very easy

▶ libcurl for C/C++ client in the software

framework

▶ requests library for Python

▶ large amount of standard tools

User friendly command line interface

▶ pure python

▶ inspect/modify database contents

▶ e.g. compare global tags

b2conditionsdb diff tag1 tag2

Python Requests

#!/usr/bin/env python3.6
import requests
BASE_URL = "http://..."
globalTag = "development"
r = requests.get(f"{BASE_URL}/globalTag/"

"{globalTag}/payloads")
r.raise_for_status()
for payload in r.json():

print(payload["checksum"])



Conclusions

M. Ritter, L. Wood et al. Belle II Conditions Database Overview 14 / 15ACAT2017 — August 22, 2017

Belle II Conditions Database

▶ leverage existing tools where possible

▶ REST: easy, well defined interface between

client and server

Server

▶ payload content agnostic web service

▶ implemented using industry tools

▶ single server setup at half the expected

performance

Client

▶ use ROOT files as payloads

▶ automatic updates, “offline” mode

▶ independent command line client

Additional Details

Two Posters today

▶ Implementing the Belle II Conditions

Database using Industry-Standard Tools

(L. Wood et al.)

▶ Belle II Conditions Database Interface

(M. Ritter et al.)



Thank you

for your attention


