

High Statistics and GPU Accelerated Data Analysis in IceCube

Philipp Eller (pde3@psu.edu) for the IceCube collaboration

Limited Monte Carlo

- Experiments usually need loads of MC, especially for high statistics data analyses
- MC production (simulation, reconstruction, ...) can be very time and resource consuming
 - Yesterday we heard: HL-LHC MC production and storage alone may cost ~\$1B (one billion!)
- Furthermore, handling huge MC sets is often slow
- -> Can we just live with less MC?

Smoothing techniques

- To mitigate statistical noise
- For illustration, using a toy model with known true pdfs
- identical 10k event samples to estimate original density

PISA Method

- Instead of applying smoothing to final events
 - Use MC to characterize detector resolutions (4) and selection efficiencies (3)
 - Apply smoothing to these well behaved distributions
- Here: Convolute with atmospheric flux (1) and oscillation probabilities (2) to arrive at final spectra

Effect of low MC statistics

- Example analysis with true result = 2.7σ
- Small sample sizes can lead to (grossly) wrong results
- PISA method virtually independent of input MC size
 - -> Can save orders of magnitude of MC

GPU acceleration

Also speed is an issue

We accelerated all mentioned methods with Nvidia CUDA

to run on GPUs

- Example:
 - Simple Histogram method took 16h to run a full analysis
 - After GPU and other optimizations:~2 minutes
 - Facilitates development of analysis

 Allows to run more intensive statistical procedures (e.g. Feldman-Cousins confidence Interval calculation) THE END