
A minimally invasive strategy for NNLO event files

Daniel Mâıtre

Institute for Particle Physics Phenomenology , Ogden Centre for Fundamental Physics,
Department of Physics, University of Durham, Science Laboratories, South Rd, DURHAM
DH1 3LE, UNITED KINGDOM

E-mail: daniel.maitre@durham.ac.uk

Abstract. In this contribution we discuss the extension of the event file format proposed in
Ref [1] from NLO to NNLO. We describe a strategy that minimises the changes needed to the
NNLO generator code, at the cost of increasing the CPU cost. We expect the CPU cost for
the production of the event files to be amortised by reusing the event files in many different
analyses.

1. Introduction
Recent advances in the calculation of one-loop amplitudes have made Next-to-Leading Order
(NLO) QCD predictions for high multiplicity processes achievable (see e.g. [2] for a review).
While the calculations necessary for these predictions are tractable, they come at a high CPU
cost. In order to amortise the cost of the matrix element calculation and its integration over
the phase-space an event file format has been proposed [1] for NLO processes. The strategy
to produce and use these event files is sketched in Fig. 1. The full generator is run for a loose
set of cuts and all phase-space and matrix element information is stored in a file (called nTuple
file in this contribution). At a later stage the event files can be re-read and effectively replace
the generator. This process is much more efficient than running the generator again and much
less error prone. In this contribution we will present a strategy to obtain event files for NNLO
generators. At NNLO the complexity of the generators is much higher than at NLO and it
would be much harder to isolate the information needed for the event files in the code. Instead
we will change strategy and try to minimise the code changes needed in the generator.

Figure 1. Overview of the production and usage of event files.



2. Advantages and disadvantages of event files
In a typical analysis the majority of the CPU resources are spent on the matrix element
calculation. Other aspects of the analysis such as the PDF evaluation, cuts and jet algorithm
tend to only take a small fraction of the time. Using event files allows to change details of
the analysis after the generation, in particular the re-evaluation of the prediction with different
PDF sets or scales would be extremely costly if one had to start the complete generation from
the start. Beyond saving computation time this scheme allows researchers unfamiliar with the
generator to use its results in a convenient fashion. In this scheme the generator expert have
an opportunity to protect the users of their calculation from all the difficulties of running their
program on a large scale. A significant effort is needed to validate a generator and ensure it
reproduces established results after each change. Event files are a more persistent way of storing
the result of a calculation and are easier to validate.

The main disadvantage of the event files is that their size is rather large. The usefulness of
nTuples depends on the trade-off between storage and usage convenience. While considering the
trade-offs between size and CPU time one should remember that generators have been optimised
for CPU time and not optimised to produce the most efficient set of phase-space points form
a storage point of view. The efficiency of the storage can generally be increased at the cost of
CPU time.

3. Event files for NNLO
The event files have proven their usefulness at NLO, could they be useful NNLO too? The
advantages and disadvantages are the same than at NLO, but the trade-offs are starker. While
NLO event files only get uncomfortably large at large multiplicities NNLO calculations require
a very large amount of phase-space points already at low multiplicities. On the other hand
the CPU time for these calculations are much larger than at NLO so the potential savings are
larger. To evaluate the potential of event files for NNLO generators a feasibility study [2, 3]
was performed in the Les Houches workshop. For this study the authors used EERAD3 [4] to
estimate the size of the event files that would be necessary to reproduce exiting results. The
study’s main result is shown in Fig. 2. The figure shows two storage strategies, trading some
re-calculation at read-time for some storage saving, see ref. [2] for more details.

The main take away point of the feasibility study [2] is that event files could still offer a
favourable size/CPU time trade off.

3.1. General structure of a NNLO generator
In order to design the least intrusive method of extracting the information we need from the
NNLO generator we start form the schematic view displayed in Fig. 3. The calculation starts
with the generation of the phase-space, including the parton momentum fractions in the case of
hadronic initial state. This information is used in the matrix element calculation to calculate
the weight for the event, this includes possible subtraction terms that are used to regulate
infrared divergences. Finally the weights calculated are histogrammed according to observables
calculated from the phase-space information. In the following we take the case of a hadron-
hadron collider, cases with fewer hadronic initial states can be treated in a similar way.

3.2. Extracting the information
The structure shown in Fig. 3 already shows the places in the code where the phase-space
information and the weights can be extracted, so that the intermediate step (the most costly
part) can be replaced by reading from event files. Extracting information from the generator as
it produces the NNLO cross section allows us the get the weight for a given phase-space point for
the scale and PDF chosen by the generator at the time of the generation. We would like to have
the flexibility to generate the weight as it would have been produced with a different scale choice



Figure 2. Size of the event files as a function of the number of events. The shaded green line
represents the approximate number of events needed to match existing results. The horizontal
dashed line at a size of a Terabyte is a subjective “pain threshold” where the size of the nTuples
starts getting uncomfortable.

Figure 3. Schematic view of a generic generator.

or different PDF set so we need to decompose the weight ω we intercept at the histogramming
stage into more specialised components. To improve the clarity of the presentation we also
assume the factorisation and renormalisation scales are equal. The general form of the weight
is given by

ω = αnS pdf(x1, id1) pdf(x2, id2)×
(
c0 + c1 log(µ2) + c2 log2(µ2) + . . .

)
. (1)

In order to reconstruct the weight for a different PDF and scale choice we need to extract

• initial state flavours id1, id2

• momentum fractions x1, x2

• factorisation and renormalisation scales µF = µR = µ

• The coefficients of the scale logarithms c0, c1, ...

The best place to extract this information is in the PDF procedure. Most generators use the
LHAPDF [5] library to evaluate the PDFs, we will assume that is it the case here. If we observe
the arguments passed to the LHAPDF functions we can infer the values of x1, x2, and µ. Because
of the correlation between the PDF fit and the value of αS used in the fit most generators also
use the LHAPDF function for the evaluation of αS(µ).

Inferring the initial state flavours is more difficult, as one call to the PDF function returns
the value of the PDF for all initial state flavours in a 13-element vector, we have no way to know
which one the generator used (or whether multiple entries have been combined). To circumvent



this problem we introduce a strategy that we will reuse often for different purposes. The idea is
to run several instances of the NNLO generator within slightly different environment and use the
different weights obtained for each parallel instance to infer more information than is available
from a single instance. To assert which of the 13 elements of the PDF vector are used in the
calculation of the weight we can use 13 parallel instances of the NNLO generator, each with a
modified version of the PDF function that returns zeros for all PDF values except for the one
element, as sketched in Eq. 2.

f1(x) = (∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

f2(x) = (0, ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

f3(x) = (0, 0, ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

f4(x) = (0, 0, 0, ∗, 0, 0, 0, 0, 0, 0, 0, 0, 0)

f5(x) = (0, 0, 0, 0, ∗, 0, 0, 0, 0, 0, 0, 0, 0)

f6(x) = (0, 0, 0, 0, 0, ∗, 0, 0, 0, 0, 0, 0, 0)

f7(x) = (0, 0, 0, 0, 0, 0, ∗, 0, 0, 0, 0, 0, 0)

f8(x) = (0, 0, 0, 0, 0, 0, 0, ∗, 0, 0, 0, 0, 0)

f9(x) = (0, 0, 0, 0, 0, 0, 0, 0, ∗, 0, 0, 0, 0)

f10(x) = (0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, 0, 0, 0)

f11(x) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, 0, 0)

f12(x) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗, 0)

f13(x) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ∗) (2)

This method is quite expensive, in particular if one wants to identify pairs of PDF contributions
as one would need to run 13 · 13 = 169 parallel versions of the generator, but it can be useful
to identify potential PDF combinations in a preliminary run. In practice it is best to run two
parallel instances of the generator, one with the normal PDFs and one with all the PDFs replaced
by one. The ratio between the weights gives the product of the PDFs and we can compare this
ratio with a table of possible combinations.

This strategy works well if the weight consists of only one PDF combination evaluated at
a single pair of momentum fractions x1, x2. This is not always the case, especially in the
subtraction method where subtraction contributions can be evaluated at different values of x1
and x2. In the case of multiple PDF pairs for the same weight we can use the same strategy
and use instances of the generator with PDFs that are set to zero at different times. Eq. 3
illustrates this strategy. A first instance runs with each second call to the PDF set to 0, the
second instance leaves the PDF vector untouched but sets the values left untouched by the first
instance to zero instead. Two additional instances are run in parallel that project out the same
PDF call than the first two, but replace the (non zero) values in the vector by 1. Building the
ratio between the first and third instances and the second and fourth instances allows to obtain
the PDF with argument x1 or x′1 in isolation.

ω1 = c1 pdf(x1, x2, id1, id2, Q) + c2 0
ω2 = c1 0 + c2 pdf(x′1, x

′
2, id

′
1, id

′
2, Q)

ωpdf=1
1 = c1 1 + c2 0

ωpdf=1
2 = c1 0 + c2 1

(3)

The coefficient of the different power of scale logarithms can be obtained by running different
instances of the NNLO program with different scale settings. The power of n of αS(µ) in Eq. 1



is usually known from the settings in the generator but if not, or if it is changing during the run
we can identify it by running two parallel instances, one with αS set to unity. Comparing the
ratio of the weights with the value of αS returned by LHAPDF we can infer n as

n =
log(w)− log(w|αS=1)

log(αS)
.

3.3. Implementation details
To implement the strategy described above we introduce an intermediary library (called
“impersonator” in Fig. 4) between the generator and the LHAPDF library that allows to set
some values in the PDF vector to zero or unity. This library also reports the values of the
PDF vector and αS to be used in the comparison between generator instances. Fig. 4 shows
the interactions between the generator the LHAPDF impersonator and the LHAPDF library.
The only modifications needed in the generator is one line of code to report the weight where
the histogramming occurs and one line of code to report the momentum configuration when the
cuts are evaluated. The impersonator can be implemented in a way that is transparent to the
generator, so no changes have to be made to the interface between the generator and LHAPDF.
One should note here that it is important that apart from the PDFs and αS returned to the
generator everything else should be equal between instances, this means for example that no
integration optimisation should be made based on the weights calculated by the instances, as
this optimisation would be different for the instance using the real PDF values and those with
the PDF values changed to zero or unity. In practice this means that a first warmup integration
with original PDFs has to be performed and should be frozen for the event file information
collection runs.

Figure 4. Schematic view of the information collection strategy: the generator is run with
the same phase-space points in different environments. These different environments are
implemented by the additional layer called “impersonator” in the figure. The weights, PDF
and phase-space information is collected by an outside observer called “collector” in the figure.



When working with actual implementations of NNLO generators other complications arise.
Most generators implement some caching of phase-space or PDF values which can interfere with
our inference of the information we need to gather for the event files. It is easy to check that
the information gathered is correct by running (yet another) instance with a different PDF and
scale choice and checking that the information we reconstructed is able to reproduce the weights
of the control instance.

4. Conclusion
We presented a strategy to collect information to build event files for processes calculated at
NNLO accuracy. This method could also be applied to NLO. The strategy makes the clear choice
of using some redundant CPU time in order to simplify the implementation of the information
gathering. It is clear that this approach can not compete with an implementation where the
generator authors extract the information directly from their code. This could be quite difficult
and if attempted, the process could be aided by using the method described in this contribution
as a check that the information provided in a direct way matches the empirically determined
data. It should also be noted that the information extracted with the procedure above can be
directly applied to construct fastNLO/APPLgrid [6, 7] tables for fast evaluation of histograms
for PDF fits.

References
[1] Bern Z, Dixon L, Febres Cordero F, Höche S, Ita H et al. 2014 Comput.Phys.Commun. 185 1443–1460

(Preprint 1310.7439)
[2] Andersen J R et al. 2016 9th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2015) Les Houches,

France, June 1-19, 2015 (Preprint 1605.04692) URL http://arxiv.org/pdf/1605.04692.pdf

[3] Maitre D, Heinrich G and Johnson M 2016 PoS LL2016 016 (Preprint 1607.06259)
[4] Gehrmann-De Ridder A, Gehrmann T, Glover E W N and Heinrich G 2007 JHEP 11 058 (Preprint 0710.0346)
[5] Buckley A, Ferrando J, Lloyd S, Nordstrm K, Page B, Rfenacht M, Schnherr M and Watt G 2015 Eur. Phys.

J. C75 132 (Preprint 1412.7420)
[6] Britzger D, Rabbertz K, Stober F and Wobisch M (fastNLO) 2012 Proceedings, 20th International Workshop

on Deep-Inelastic Scattering and Related Subjects (DIS 2012) pp 217–221 (Preprint 1208.3641) URL
http://inspirehep.net/record/1128033/files/arXiv:1208.3641.pdf

[7] Carli T, Clements D, Cooper-Sarkar A, Gwenlan C, Salam G P, Siegert F, Starovoitov P and Sutton M 2010
Eur. Phys. J. C66 503–524 (Preprint 0911.2985)


