
The LHCb Software and Computing Upgrade

towards LHC Run 3

S Roiser1 and C Bozzi1,2

on behalf of the LHCb Computing Project
1 European Organization for Nuclear Research (CERN), Geneva, Switzerland
2 Sezione INFN di Ferrara, Ferrara, Italy

E-mail: stefan.roiser@cern.ch, concezio.bozzi@cern.ch

Abstract. LHCb is planning major changes for its data processing and analysis workflows for
LHC Run 3. Removing the hardware trigger, a software only trigger at 30 MHz will reconstruct
events using final alignment and calibration information provided during the triggering phase.
These changes pose a major strain on the online software framework which needs to improve
significantly. The foreseen changes in the area of the core framework include a re-design of
the event scheduling, introduction of concurrent processing, optimizations in processor cache
accesses and code vectorization. Furthermore changes in the areas of event model, conditions
data and detector description are foreseen. The changes in the data processing workflow will
allow an unprecedented amount of signal events to be selected and therefore increase the load
on the experiments simulation needs. Several areas of improvement for fast simulation are
currently being investigated together with improvements needed in the area of distributed
computing. Finally the amount of data stored needs to be reflected in the analysis computing
model where individual user analysis on distributed computing resources will become inefficient.
This contribution will give an overview of the status of those activities and future plans in the
different areas from the perspective of the LHCb computing project.

1. Introduction
The LHCb experiment will be upgraded for data taking in Run 3 and after [1]. Tu fully profit
from the increase in instantaneous luminosity from 4 × 1032 to 2 × 1033cm−2s−1 the current L0
hardware trigger will be removed, and a full software trigger will be deployed, with the goal of
sustaining trigger capabilities up to the inelastic event rate of 30 MHz. The full read-out of the
detector at this rate has a major impact on software and computing systems.

A study of the trigger output rates for different physics scenarios is reported in the LHCb
Trigger and Online Upgrade TDR [2]. In summary, output bandwidths between 2 and 5 GB/s
are expected, to be compared with 700 MB/s in Run 2. If the current computing model and
software framework are kept, the data storage capacity and computing power required to process
data at this rate, and to generate and reconstruct equivalent samples of simulated events, will
exceed the current capacity by at least an order of magnitude. It is therefore mandatory to
study how the current model can be changed to sustain this scenario.

The introduction of the split High Level Trigger (HLT) concept in the Run 2 data taking [3]
has allowed the integration of real-time calibration and alignment into the data taking process [4].
The online reconstruction is therefore equivalent to the offline one, thus enabling analyses to be



performed on physics objects produced directly out of the trigger. Furthermore, the introduction
of the Turbo data stream, where only a subset of the event information is saved, allows to decrease
the event size, and therefore the output bandwidth and the need for additional offline computing
resources. The physics program at LHCb will be clearly maximized by further exploiting these
concepts, which ultimately means to move the event reconstruction and selection as close as
possible to the online processing, and to implement data streaming as early as possible in the
computing model.

A major challenge to be faced in the upgrade era is therefore the efficient usage of computing
resources. Multi-core and many-core architectures, as well as coprocessors such as GPGPUs
and FPGAs, offer significant speedups, making them particularly suited for the event filter
farm. The efficient use of these new processors requires a paradigm shift in the LHCb core
software framework, scheduling, and event model. The R&D activities related to this topic are
presented in Section 2.

The events accepted by the trigger will be distributed for analysis in a similar way as today
through the Worldwide LHC Computing Grid (WLCG). Section 4 details the challenges to be
dealt with in this domain. Given that event reconstruction and selection will happen at the
trigger level, the event format will be compact, and comparable to the ones currently used
(Data Summary Tape, DST or Micro Data Summary Tape, µDST). Offline data processing will
be very limited, and the storage costs for the recorded data will be driven by the HLT output
rate. The vast majority of offline CPU work will be therefore dedicated to the production of
simulated events. As the number of simulated events is proportional to the number of data
events, it follows that the work needed for simulation will exceed the expected resource increase
considerably. It is therefore necessary to speedup simulation and pursue alternative ways, where
faster or parameterized simulations are employed where possible. Section 3 summarizes the work
plan for these activities. A summary is given in Section 5.

2. Core software framework
The stringent requirements on the data processing throughput of the LHCb upgrade imply that
the utilization of computing capacities of current and emerging hardware has to be improved
both quantitatively and qualitatively.

2.1. Framework
The data processing model of the Gaudi framework [5, 6] used in LHCb currently implies
sequentially processing of events. To mitigate these limitations, several techniques and models
are considered, such as simultaneous multithreading, a task-based programming model [7], by
which the basic computation units, i.e. the Gaudi algorithms, are represented and handled as
tasks, and concurrent data processing, with inter- and intra-event, and (optionally) intra-task
concurrency. The sustainability and conformity of the above-mentioned principles in the Gaudi

framework were demonstrated by a prototype [8], which constitutes the building block of the
framework for the upgrade.

Another wide-ranging change will concern the mechanisms of declaration of data dependencies
between the Gaudi Algorithms. In particular, their input and output data requirements must
be explicitly declared to the framework. This is needed by the Gaudi task scheduler for task
concurrency control.

The concurrent paradigm places several stringent constraints on the event data model. First
and foremost, once data is made available and written to the Transient Event Store (TES), it
must remain immutable.

A functional framework was developed with the above requirements in mind, including a
read-only TES, in the context of Gaudi. About one hundred algorithms have been adapted,
some of them were partially ported to be used in the current framework, with significant gain



in performance. An application was built (Mini-Brunel), that includes a Kalman filter for
charged track reconstruction. and full photon reconstruction in the RICH detectors. Preliminary
measurements of the performance show a good scalability in terms of multi-threading, a very
low and scalable memory footprint. Fig 1 shows a comparison of memory usage where the
multi-threaded jobs uses a factor 40 less memory than the multi-processing one.

Figure 1. Memory consumption for multi-job and multi-thread approaches

2.2. Event Model
The LHCb event data model [9] has been very successful in enabling developers to efficiently
write reconstruction or selection code, by providing e.g. an object representation of raw data,
reconstructed objects and decay trees, and limiting the number of changes in the interface to
the data model. However, as a result of the Array of Structures (AoS) design of the event model
classes in its current form, the exploitation of SIMD instruction is more difficult. In addition,
current event model objects are not composable, so if information needs to be added to objects
without modifying them, they need to be copied. This costs significant amounts of memory,
which in turn leads to sub-optimal usage of resources.

As a result of the changes to the core framework, the event model objects are therefore
required to become read-only after their initial creation, to be composable, to allow the choice
of memory layout (SoA, AoS, etc.) and to use single precision where possible.

2.3. Detector Description and Conditions Database
The LHCb Detector Description (LHCbDD [10]) is based on a home-made framework, developed
along the lines of the Geant 4 geometry, with special extensions to implement generic active
volumes. The persistent format chosen was XML. The current implementation has several
limitations, in particular it is not thread-safe, and therefore has negative impact on the
throughput performance of a multithreaded software framework.

The DD4Hep toolkit [11] has been investigated as a replacement. It has been shown[12] that
using DD4Hep from Gaudi is relatively easy. The full LHCb geometry has been automatically
converted and tested. In addition, a geometry where the detailed structure of the LHCb detector
is averaged out over a small number of elements, has been defined which e.g. improves the
throughput for algorithms such as the Kalman filter.

The LHCb conditions data are currently stored in a database managed with the Cool/Coral

libraries [13], developed by CERN/IT in collaboration with LHCb and ATLAS. The level
of thread-safety of the Cool/Coral library is unclear. Moreover, the XML format used for



SSE4 AVX2

time (s) Speedup time (s) Speedup

scalar 233.462 228.752
d

ou
b

le

vectorized 122.259 1.90 58.243 3.93

scalar 214.451 209.756

fl
oa

t

vectorized 55.707 3.85 26.539 7.90

Table 1. Performance of vectorized Rich photon reconstruction

persistency is slow to read and not compact. The transient representation of conditions data
are also likely to change, in order to speed up code performance.

In order to adapt the conditions interfaces to a multithreaded environment, a proposal and a
prototype have been developed in the context of Gaudi. A prototype to manage the conditions
backend with git is also available, that offers better performance and easier maintenance.

2.4. Optimization
The task-based framework described above has been successfully used on multi- and many-
cores architectures. Further studies have been performed on alternative architectures such as
GPGPUs and FPGAs, with promising results in terms of throughput [14, 15]. An example for
performance improvement in the RICH photon reconstruction via code vectorsation is shown
in Table 1. However, a large investment in code rewrite should be taken into account and a
cost-benefit analysis should be performed before taking decisions, as well as the reproducibility
of results obtained on these alternative architectures.

Performance improvements are expected by taking advantage of wide processing units and
improved scheduling in Gaudi, and by minimizing cache misses. Examples of parallelism in the
LHCb reconstruction software are given in [16, 17]. Monitoring and in-depth measurements in
these domains are challenging but nevertheless needed in order to make substantial progress.

3. Simulation
In the current offline processing, the majority of CPU work (about 70%) is spent for Monte
Carlo simulation. The current simulated samples correspond to about 15% of the total data
statistics. Given that in the LHCb upgrade the trigger purity will increase, it is expected that a
larger fraction of events will have to be simulated. This, together with the increased luminosity
and the more complex nature of the events, results in an increase between one and two orders
of magnitudes of needed CPU work.

Two avenues are being pursued in order to mitigate the required computing resources: the
usage of fast simulations, where speed-up is obtained with either fully parameterized, or fast
detector response, or reuse of events, and the usage of parallelized simulation frameworks (multi-
threading, multi-processor) and of geometries of different complexity.

The flexibility of the LHCb Simulation framework, Gauss [18], allows to implement, in
addition to the full Geant4 simulation [19, 20], a variety of predefined safe and easy to use
alternative configurations. Many options are possible including simulating only part of an event,
replacing a full Geant4 simulation with faster versions for a given detector or disabling specific
processes (e.g. Cherenkov effect in RICH detectors), stopping particles at a specific stage,
reducing the geometry, re-using the underlying event or merging a simulated signal with real



data, or even using a fully-parametric simulations providing reconstructed objects and using as
much as possible available packages like Delphes [21].

Another important aspect is enabling concurrency in the simulation application. This would
allow the usage of multi- and many-core architectures. The main player here is Gaudi with its
multi-threaded version, see above, and its proper coexistence with the multi-threaded version of
external tools like Geant4.

In any simulation with complicated geometry, the majority of time is spent navigating the
geometry itself. New geometry packages with improved performances have become available
for Geant4, like USolid [22]. This alternative version of Geant4 geometry should be tested
in the Gauss framework. In addition, the outcome of the evaluation on the change in the
detector description (see Section 2) would have an impact on how Gauss transfers the geometry
information to Geant4. A fully vectorized geometry package, VecGeom, is being developed in the
context of GeantV [23], the vectorized version of Geant4. These newer options should be tested
as soon as they will become available.

On a broader view, LHCb started a collaboration with the software developers of the Future
Circular Collider (FCC) project to create Gaussino, an experiment-independent version of
Gauss, with the intention that Gauss will be based on it and provide the LHCb specific
functionality. The development of Gaussino should allow an easier way to test new design
and package options with simpler settings but in an environment very similar to that of LHCb.

4. Distributed computing and data analysis
In the data flow model used in Run 1, the full raw event information is kept up until the end
in the processing steps, the stripping, in which a selected subset of triggered events is provided
to users for physics analysis. This model implies a heavy use of offline CPU, for reconstruction
and stripping campaigns, and storage resources for raw data. Moreover it requires data to be
moved from tape to disk and vice-versa at each stripping or reconstruction campaign to allow
processing. One important advantage of this model is that the full event information is always
saved (either on disk or on tape), thereby allowing for improvements in the reconstruction and
selection criteria to be introduced at any moment.

Although very robust and well oiled, the Run 1 data flow model cannot be sustained in the
upgrade era. The projected computing resources will not allow for the storage of the raw event
information for the entire collected luminosity. Therefore the whole data processing, from the
data acquisition to the final physics objects, needs to be changed.

The concepts of split HLT and Turbo stream, introduced in the Run 2 data taking and already
described in Section 1, will be further exploited in Run 3, where the fully software trigger system
will give a dramatic increase in efficiency for most physics channels and the current stripping
step will effectively happen online, thereby allowing for quick analysis turnaround time and
resource optimization.

The building blocks for distributed computing and analysis in the upgrade era are detailed
below. All of them can be already investigated with the current software framework.

4.1. Turbo stream to become the default
The capabilities of the Turbo stream should be extended in order to produce different output
types, as discussed in Section 4.2. The benefit of this approach is essentially the removal
of unnecessary information earlier in the workflow, with a clear benefit for online and offline
resources optimization.

4.2. New event formats
Currently, the output of the stripping can be either in the µDST or the DST formats. For both
of them, parts of the raw event can be selectively saved as needed by analysts. In the past



years, µDST has become the most widely used format (90% of the events available to physics
analysis). In the µDST only the selected decay candidate and related information (such as
PV and multiplicities) are saved in the output. In addition, other quantities can be calculated
during the stripping job and saved in µDST but no additional information can be extracted
after stripping. On the other hand, in the DST all tracks and calorimeter clusters are saved. On
average, the µDST occupies ten times less disk space than a DST. It is known that, although
several analyses cannot be performed on µDST, full event information is still not needed in
most cases. Therefore it is necessary to investigate new data formats in between µDST and
DST where, for example, only a cone of tracks around the selected candidate is stored such that
storage usage is optimized without compromising the physics analysis.

4.3. Centralised ntuple production and alternative approaches
It is foreseen that ROOT [24] ntuples will still be heavily used to perform data analysis which are
produced by users in an unscheduled activity by running over Turbo or stripping output. The
possibility to have a scheduled, centralized ntuple production is being investigated, based on the
work done within ALICE [25]. These productions would be centrally managed in a timescale of
weeks. It should also be noted that (µ)DSTs can also be directly used for physics analysis, but
this requires at the moment the entire LHCb software stack.

4.4. Distributed computing
Infrastructures such as Dirac [26] will still be the main tool through which data is processed
and distributed. The modular architecture of Dirac allows for adiabatic improvements of
components, in order to cope with the upgrade conditions. In parallel, more dynamic and
flexible ways of data placement will be investigated, for example by monitoring the accesses to
a given dataset.

5. Conclusions
The LHCb experiment will be upgraded for the Run3 data taking in 2021 onwards. A review
of the ongoing R&D work in the domains of software and computing for the upgrade has been
given in this paper.

The performance of the software trigger in terms of data throughput will be optimized by
changing significantly basic building blocks such as the core framework, that will be task-based,
the event model, that will be adapted to efficiently use wide processing units, and non-event
data. Such changes will also be useful to improve the simulation framework.

In other areas, such as the distributed computing, the analysis model, the implementation
of alternative fast simulations there will be a natural evolution towards the upgrade era, with
current Run 2 data taking to be used as testbed.

Acknowledgments
The authors would like to acknowledge the contributions of R. Aaij, M. Cattaneo, R. Cenci,
P. Charpentier, M. Clemencic, A. Contu, G. Corti, B. Couturier, C. Haen, G. Raven, I. Shapoval,
F. Stagni in the development of the work presented in this paper.

References
[1] Aaij R et al. (LHCb collaboration) 2012 Framework TDR for the LHCb Upgrade: Technical Design Report

LHCb-TDR-012
[2] Aaij R et al. (LHCb collaboration) 2014 LHCb Trigger and Online Upgrade Technical Design Report LHCb-

TDR-016
[3] Michielin E (LHCb) 2016 PoS ICHEP2016 996. 4 p URL https://cds.cern.ch/record/2287601



[4] Martinelli M and Collaboration L 2017 Journal of Physics: Conference Series 898 032039 URL
http://stacks.iop.org/1742-6596/898/i=3/a=032039

[5] Mato P 1998 GAUDI-Architecture design document Tech. Rep. LHCb-98-064 CERN Geneva URL
https://cds.cern.ch/record/691746

[6] Barrand G et al. 2001 Comput. Phys. Commun. 140 45–55
[7] Task-based Programming https://software.intel.com/en-us/node/506100

[8] 2012 The Concurrent Framework Project (CF4Hep) http://concurrency.web.cern.ch/GaudiHive

[9] Roiser S 2003 Event data modelling for the LHCb experiment at CERN Ph.D. thesis Vienna, Tech. U. URL
https://cds.cern.ch/record/692288

[10] Ponce S, Mato Vila P, Valassi A and Belyaev I 2003 eConf C0303241 THJT007 (Preprint physics/0306089)
[11] https://github.com/AIDASoft/DD4hep

[12] Clemencic M and Karachaliou A 2015 J. Phys. Conf. Ser. 664 072012
[13] Valassi A, Basset R, Clemencic M, Pucciani G, Schmidt S A and Wach M 2008 COOL, LCG conditions

database for the LHC experiments: Development and deployment status Proceedings, 2008 IEEE Nuclear
Science Symposium, Medical Imaging Conference and 16th International Workshop on Room-Temperature
Semiconductor X-Ray and Gamma-Ray Detectors pp 3021–3028

[14] Faerber C 2017 Journal of Physics: Conference Series 898 032044 URL
http://stacks.iop.org/1742-6596/898/i=3/a=032044

[15] Gallorini S, Lucchesi D, Gianelle A, Amerio S and Corvo M 2017 Journal of Physics: Conference Series 898
032029 URL http://stacks.iop.org/1742-6596/898/i=3/a=032029

[16] Prez D H C 2017 Journal of Physics: Conference Series 898 032052 URL
http://stacks.iop.org/1742-6596/898/i=3/a=032052

[17] Stahl M 2017 Journal of Physics: Conference Series 898 042042 URL
http://stacks.iop.org/1742-6596/898/i=4/a=042042

[18] Clemencic M et al. 2011 J. Phys. Conf. Ser. 331 032023
[19] Agostinelli S et al. (Geant4 collaboration) 2003 Nucl. Instrum. Meth. A506 250
[20] Allison J, Amako K, Apostolakis J, Araujo H, Dubois P et al. (Geant4 collaboration) 2006 IEEE

Trans.Nucl.Sci. 53 270
[21] Selvaggi M 2014 J. Phys. Conf. Ser. 523 012033
[22] Apostolakis J et al. 2015 J. Phys. Conf. Ser. 608 012023
[23] Amadio G et al. 2015 J. Phys. Conf. Ser. 664 072006
[24] Brun R and Rademakers F 1997 Nucl. Instrum. Meth. A389 81–86
[25] Zimmermann M (ALICE) 2015 J. Phys. Conf. Ser. 608 012019 (Preprint 1502.06381)
[26] Tsaregorodtsev A et al. 2010 J. Phys. Conf. Ser. 219 062029


