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Abstract.  In high energy physics experiments, efficient data analysis tools are required to 
extract interesting information from the massive data. For large-scale liquid-based neutrino 
experiments, neutrino signals are usually overwhelmed in huge backgrounds. By constructing a 
liquid neutrino detector toy model, we generate simulation data in Geant4 [1] and run 
reconstruction for signal background discrimination. The low-level Photo Multipliers (PMT) hits 
are also projected to a 2D plane to create visualization outputs for classification. With the 2D 
images as input, we use the Convolutional Neural Network (CNN) as a specific application, 
which has shown remarkable performance in signal and background discrimination and 
outperforms those with high-level reconstruction outputs. The method is expected to be used in 
the neutrino experiments such as JUNO with further study. 

1.  Introduction 
In high-energy physics (HEP) experiments, a huge number of events are recorded in the detectors in 
every second. The signals are usually overwhelmed by huge backgrounds. To search for the interesting 
physics in the huge data, it is essential to discriminate the signal events from backgrounds with some 
characteristic features being extracted. Neutrino experiments are good examples in HEP experiments 
where signal and background discrimination play an important role. Due to the extremely low cross 
section of neutrinos’ interactions with matters, neutrino experiments are known for their low signal rates 
and high backgrounds, which include the cosmic ray muons, radioactive backgrounds from detector  
materials and environments, as well as accidental backgrounds, such as two independent signal events 
coinciding within the same event. To increase the statistics of signal events, neutrino experiments are 
usually built with large-scale liquid detectors, such as the Super-Kamiokande [2], DayaBay [3] and 
JUNO [4] experiments.  

The traditional algorithms in HEP experiments often require extracting features from raw event data 
so that we can get better performance in event classification and physics analysis. For example, some 
critical physical quantities, such as the transverse momentum, secondary vertex and energy of the tracks 
in an event will be reconstructed. However, even if physicists spend a great deal of time on manually 
constructing the features, the result is still not promising because these algorithms are not good at solving 



 
 
 
 
 
 

non-linear problems. More or less, some information in the raw event data will be lost after data 
reconstruction.  

Deep learning is a newly flourishing machine learning algorithm which shows superior performance 
on solving non-linear problems [5]. Much efforts have been taken in various kinds of HEP experiments 
and software developments [6, 7]. In all these applications, CNN is a powerful tool in image processing 
and recognition, which makes it very suitable for event classification. Some implementations in HEP 
experiments have been realized in the recent years [8, 9]. 

In this paper, we focus on signal and background discrimination in the large-scale liquid-based 
neutrino experiments and application of CNN on the image-based event output for classification. In 
section 2, we introduce Neural Network and CNN in deep learning. In section 3, the implementation of 
a toy liquid neutrino detector model is introduced, as well as the production of simulation data and 
classification with reconstruction outputs. In section 4, we discuss the 2D imaging of the PMT hits 
distribution in event outputs and application of CNN with the image input for signals and radioactive 
backgrounds discrimination. The classification results are compared with the results from the traditional 
Multilayer Perceptron (MLP) method using reconstruction data. Finally, in section 5, we make a 
summary and discuss the potential application of the method in future neutrino experiment. 

2.  Deep Learning 

2.1.  Neural Network 
Neural network is a machine learning algorithm intellectively inspired by human brain. MLP [10, 11] is 
one of the traditional neural networks. In MLP, the basic element is a perceptron, which does exactly 
what a biological neuron do - turn to a specific state due to the input. For each input variable, the 
perceptron has a corresponding weight. Each perceptron has its own activation function and bias. Say 
the bias of the perceptron is 𝑏  and the activation is the sigmoid function, a typical output of the 
perceptron with three inputs is "e(%&'&(%)')(%*'*(+)-

./
. 

Neural network is the combination of connected perceptrons. As shown in the left plot of Figure 1, 
perceptrons are fully connected layer by layer. The left layer in purple represents the input layer, the 
number of the perceptron is decided by the number of inputs. Layers in blue represent the hidden layers. 
The total amount of hidden layers and perceptron can be adjusted. While training the neural network, 
different combinations need to be tried to find out which one outperforms the others. The green layer 
represents the output layer, which gives prediction of the neural network. 

 

          
Figure 1. Basic structure of neural network (left) and the structure of a convolutional layer (right). 

2.2.  Convolution Neural Network 
Convolution neural network [12] is inspired by the biological process in visual cortex. Instead of 
processing the information pixel by pixel, visual cortex does it in a part by part manner. It is widely used 
in the field of computer vision and has shown extraordinary performance. 

In a convolutional layer, the neurons are no longer fully connected to its previous layer. There are a 
set of learnable filters in the convolution layer. During the forward process, the filter slides across the 
input and computes the dot product between the weights of filter and the input. When we slide the filter 



 
 
 
 
 
 

over the whole picture, we get something like a feature map of the original input. The basic structure of 
a convolutional layer is shown in the right plot of Figure 1.  

3.  Implementation in a Neutrino Detector Model 

3.1.  Detector Modelling 
Neutrino experiments usually use a large amount of materials as the detector. In measurement of the 
neutrinos/antineutrinos from accelerators or reactors in nuclear power plants, inverse beta decay (IBD)    
𝑣12 + 𝑝 → 𝑒( + 𝑛  is one the most commonly used reaction for neutrino detection. The detecting 
materials are usually liquids, such as pure water (Super-Kamiokande, DayaBay), or liquid scintillator 
(KamLAND, JUNO). To detect the single photons from Cherenkov light or scintillation light, photon-
multiplier (PMT) are widely used in neutrino experiments. 

A toy neutrino detector model has been designed to simulate the large-scale liquid-based neutrino 
experiments. In this toy model, the detector is a spherical container with the diameter of 30 meters and 
is filled with liquid scintillator (linear alkylbenzene) for neutrino detection. The surface of the sphere is 
covered by 20-inch PMTs to measure the scintillation light from the liquid in the container. The number 
of the PMTs is about 10,000. A sketch of the detector model is shown in Figure 2. (Please note that the 
size of the PMTs and the size of container are not of the same scale but just for illustration.)  

 
Figure 2. Sketch of the toy detector model. The blue sphere is the liquid container with grey PMTs 

arranged on its surface for photon detection.  

3.2.  Signals and Backgrounds 
In this study, we focus on the discrimination of IBD signals and radioactive backgrounds. The signals 
are from neutrinos’ IBD interaction with two final particles, a positron and a neutron. They both deposit 
energy in the liquid scintillator and produce optical photons, which will be received by the PMTs to 
reconstruct the vertex and energy of the event. 

Due to the low signal counting rates in most neutrino experiments, background control is one of the 
most important and difficult works. The backgrounds events may come from different kinds of sources, 
including cosmic ray muons, radioactive background and accidental backgrounds. Neutrino experiments 
are usually build in deep underground with heavy overburdens above. Usually only high energy muons 
can penetrate the rocks on top of the detector, so the characteristics of cosmic ray muons are quite 
different from signals. In this study, we focus on discrimination of signals and radioactive backgrounds. 
In neutrino experiments, the level of radioactive backgrounds is greatly dependent on the purity of the 
environments and detector materials. The most common radioactive backgrounds come from the 
radioactive elements such as 238U, 232Th, 40K and 222Rn, which widely exist in the environment rocks, 



 
 
 
 
 
 

PMT glasses, detector liquid due to impurity and the containers. According to different environment of 
a specific neutrino experiment and materials being used in a specific detector, radioactive backgrounds 
can be greatly different.     

3.3.  Simulation and Reconstruction 
The detector model has been implemented in a Geant4 based detector simulation program. The signal 
IBD events are generated with event vertex randomly distributed in the container of liquid scintillator. 
Its final particles, the positron and neutron deposit energy after flying a short distance and produce 
scintillation lights. The photons transport in the liquid container and then produce hits in the PMT on 
the surface of the container. The backgrounds events are produced not only in the liquid scintillator, but 
also come from the container itself and the PMTs surrounding it.  

The hits from all fired PMTs in an event will be written out for reconstruction. In neutrino 
experiments, event vertex and energy of the neutrino are two important variables for further physics 
analysis. In vertex reconstruction, we use the Charge Centered algorithm, in which the weighted position 
center of all fired PMTs after correction is set to be the vertex of the neutrino interaction point. For 
energy reconstruction, a Maximum Likelihood algorithm is used to fit the PMT hits distribution and get 
the most probable value of the reconstructed energy.  

3.4.  Classification with Reconstruction outputs 
The reconstructed event vertex and event energy, together with other characteristic variables such as the 
total number of the PMT hits, can be used to discriminate IBD signals from radioactive backgrounds. 
The IBD signals can only be produced with their vertices in the liquid scintillator, while the radioactive 
background can also be produced from the container and PMTs near surface. The radioactive 
contributions from PMTs are greatly dependent on the materials of PMT glasses. In this way, the event 
vertex information can be used to separate signals and backgrounds, although there may be some 
overlaps in their distributions. The energy spectrum of reactor neutrinos is also different from those from 
radioactive elements decays, which makes it possible to use the event energy as a variable in 
discrimination. So long as the event vertex and energy are accurately reconstructed, the signal and 
background can be classified to some extent. 

To test the performance of signal and background discrimination with event reconstruction outputs, 
we generate 10,000 signal IBD events and 10,000 radioactive background events, run through the 
detector simulation and event reconstruction to produce the variables for classification. The 5 
reconstruction output variables to be used as input for classification are: reconstructed energy, number 
of total hits and the three-dimensional Euclidean coordinate of reconstructed vertex. 

A traditional neural network MLP is used to study the discrimination power with the reconstruction 
outputs. The architecture of the network is shown in Figure 3. The input layer has 5 inputs, which 
correspond to the 5 reconstruction output variables. The number of hidden layer is 3, with the number 
of neurons in each layer being 50 or 100. The output has only one neuron to determine whether this 
event is signal or background.  
 

 
Figure 3. Architecture of the traditional neural network MLP. 

 
The total 20,000 events of signals and backgrounds are separated into two samples, 18,000 events 

for training and 2,000 events for verifying. In training, we choose the Area Under the Curve (AUC) as 
the index of performance. The training result for AUC is 0.856, which will be used as a baseline for 
comparison with the CNN classification result.  

4.  Application of CNN for classification 



 
 
 
 
 
 

4.1.  2D event display 
The distribution of the fired PMT hits on surface of the spherical container can be projected to a θ-φ 
2D plane to construct the image of the hits distribution of an event. For the PMTs with multiple hits, 
the total charges of all hits on the PMT are accumulated and the hit time is set to the earliest arrival 
hit’s time. According to the difference on the production vertex of the event and the characteristic 
energy due to different particles in signal and background, the 2D projection event display can be used 
as graphical inputs for classification. 

Figure 4 shows the typical 2D event display of a signal IBD event (left) and a radioactive background 
event (right). The scale of energy deposition is at MeV level. The signals are usually produced in the 
liquids in the container with a flatter hits distribution on the surface, while the backgrounds are produced 
closer to the surface with a sharper hits distribution on the surface. With the characteristics in 2D images, 
they can be used as inputs of CNN for classification. The images are low-level data with all raw 
information being kept. In comparison to the method using reconstruction outputs, no event 
reconstruction processes are required. It not only saves the time and computing resources, but also 
independent of the precision of any reconstruction algorithm. 

 
Figure 4. 2D projection of the hits distribution in a signal event (left) and a background event 

(right). The deposit energy in the events is on the scale of MeV. 

4.2.  CNN architecture  
The size of input image is 314 by 329 pixels, which fully map the PMT arrangements on the surface of 
container. A CNN is constructed for classification with the image inputs. The architecture of the network 
is shown in Figure 5. The original 2D projection pictures are converted into RGB format and feed into 
it. There is a total of 5 hidden layers in the CNN. The first three hidden layers’ structures are the same, 
they are all composed of two convolutional layers with 10 5 x 5 filters and one max-pooling layer with 
a 2 x 2 filter and its stride is set to be 2. The last two hidden layers are fully connected and each of them 
has 50 neurons. The output layer’s activation function is the sigmoid function, the threshold is set to be 
0.5 to determine whether the input is signal or background. 
 

 
Figure 5. Architecture of CNN neural network 

4.3.  Training  
The CNN model is trained on a GPU server with 4 NVIDIA Tesla K80 video cards. The same 20,000 
event data samples in previous MLP tests are used in the CNN training. Instead of using the 
reconstruction output as input variables, the 2D hits projection images from each event are used as inputs 



 
 
 
 
 
 

of CNN network. In training, we use the Batch-Normalization [13] and Dropout [14] strategy to speed 
up the training and prevent overfitting. We also adopt ADAM as the optimizer [15]. The training lasts 
for 30 epochs before it converges. The training curve for CNN is shown in Figure 6. 

 
Figure 6. Convergence curve of the CNN in training. 

4.4.  Performance  
The event classification results from MLP and CNN are listed in Table 1. We adopt AUC as the 
evaluation metrics to compare the classification power in different methods. As shown in Table 1, the 
CNN achieves much higher accuracy than MLP, which means that using CNN can significantly improve 
the performance of signal background discrimination without requiring any high-level feature. The 
classification accuracy is 97.4% for signals and 96.0% for backgrounds, respectively.  
 

Table 1. Performance of event  

 AUC Variance 

MLP 0.856 <0.001 
CNN 0.975 <0.001 

 

5.  Summary 
Deep learning has shown its powerful learning ability in different fields. It is skilful in handling massive 
data and finding the non-linear relationship between inputs and outputs. By applying the Convolutional 
Neural Networks in signal and background classification for a liquid neutrino detector model, we 
demonstrate that the low-level hits output can be transformed into images for event classification with 
CNN. Without knowing the high-level features of events from reconstruction, the signal and background 
discrimination power of CNN outperforms the traditional MLP method with reconstruction results. The 
toy detector model is designed to be a simplified version of the neutrino experiment JUNO. With further 
study, this method is expected to be applied in the realistic neutrino experiments in the future.   
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