
Learning to Remove Pileup at the LHC

with Jet Images

Patrick T. Komiske,a Eric M. Metodiev,a Benjamin Nachman,b and
Matthew D. Schwartzc

a Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA
02139, USA
b Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
c Department of Physics, Harvard University, Cambridge, MA 02138, USA

E-mail: pkomiske@mit.edu, metodiev@mit.edu, bpnachman@lbl.gov,

schwartz@physics.harvard.edu

Abstract. We present the Pileup Mitgation with Machine Learning (PUMML) algorithm for
pileup removal at the Large Hadron Collider (LHC) based on the jet images framework using
state-of-the-art machine learning techniques. We demonstrate that our algorithm outperforms
existing methods on a wide range of jet observables up to pileup levels of 140 collisions per
bunch crossing. We also investigate what aspects of the event our algorithms are utilizing by
understanding the learned parameters of a simplified version of the model.

1. Introduction
The Large Hadron Collider (LHC) is operated at very high instantaneous luminosities to achieve
the large statistics required to search for exotic Standard Model (SM) or beyond the SM processes
as well as for precision SM measurements. Most collisions are soft, with the protons dissolving
into mostly low-energy pions that disperse throughout the detector. A typical collision of this
sort at the LHC will contribute about 0.6 GeV/rad2 of energy [1, 2]. Occasionally, one pair
of protons within a bunch crossing collides head-on, producing hard, high-energy radiation of
interest. At high luminosity, this hard collision, or leading vertex (LV), is always accompanied by
soft proton-proton collisions called pileup. The data collected thus far by ATLAS and CMS have
approximately 20 pileup collisions per bunch crossing on average (〈NPU〉 ∼ 20); the data in Run
3 are expected to contain 〈NPU〉 ∼ 80; and the HL-LHC in Runs 4-5 will have 〈NPU〉 ∼ 200.
Mitigating the impact of this extra energy on physical observables is one of the biggest challenges
for data analysis at the LHC.

The Pileup Mitigation with Machine Learning (PUMML) algorithm was introduced in
Ref. [3], building on the jet images paradigm [4, 5] which has found successful application
in jet tagging with convolutional neural networks [6, 7] and generation [8, 9]. To apply the
convolutional neural network paradigm to cleaning an image itself, we exploit the finer resolution
of the tracking detectors relative to the calorimeters of ATLAS and CMS and the fact that
tracking information allows charged particles to be identified as coming from either pileup or
the leading vertex. We give as input to our network three-channel jet images: one channel for
the charged LV particles, one channel for the charge pileup particles, and one channel, at slightly

lower resolution, for the total neutral particles. We then train the network to reconstruct the
unknown image for LV neutral particles.

We apply the algorithm to R = 0.4 anti-kt jets. The jet image inputs are square grids in
pseudorapidity-azimuth (η, φ) space of size 0.9 × 0.9 centered on the charged leading vertex
transverse momentum (pT)-weighted centroid of the jet. To simulate the detector resolutions of
charged and neutral calorimeters, charged images are discretized into ∆η ×∆φ = 0.025× 0.025
pixels and neutral images are discretized into ∆η×∆φ = 0.1× 0.1 pixels. We use the following
three input channels:

red = the transverse momenta of all neutral particles

green = the transverse momenta of charged pileup particles

blue = transverse momenta of charged leading vertex particles

The output of our network is also an image:

output = the transverse momenta of neutral leading vertex particles.

Only charged particles with pT > 500 MeV were included in the green or blue channels.
Charged particles not passing this charged reconstruction cut were treated as if they were
neutral particles. The different resolutions for charged and neutral particles initially present
a challenge, since standard architectures assume identical resolution for each color channel. To
avoid this issue, we perform a direct upsampling of each neutral pixel to 4 × 4 pixels of size
∆η ×∆φ = 0.025 × 0.025 and divide each pixel value by 16 such that the total momentum in
the image is unchanged.

The convolutional neural net architecture used in this study took as input 36 × 36 pixel,
three-channel pileup images. Two convolutional layers, each with 10 filters of size 6 × 6 with
2 × 2 strides, were used after zero-padding the input images and first convolutional layer with
a 2-pixel buffer on all sides. The output of the second layer has size 9× 9× 10, with the 9× 9
part corresponding to the size of the target output and the 10 corresponding to the number of
filters in the second layer. In order to project down to a 9 × 9 × 1 output, a third convolution
layer with filter size 1 × 1 is used. This last 1 × 1 convolutional layer is a standard scheme for
dimensionality reduction. A rectified linear unit (ReLU) activation function was applied at each
stage. A schematic of the framework and architecture is shown in Fig. 1. All neural network
implementation and training was performed with the python deep learning libraries Keras [10]
and Theano [11]. The dataset consisted of 56k pileup images, with a 90%/10% train/test split.
He-uniform initialization [12] was used to initialize the model weights. The neural network was
trained using the Adam [13] algorithm with a batch size of 50 over 25 epochs with a learning
rate of 0.001. The following loss function was used to train PUMML was a modified per-pixel
logarithmic squared loss with a value of p̄ = 10 GeV:

` =

〈
log

(
p

(pred)
T + p̄

p
(true)
T + p̄

)2〉
. (1)

The PUMML architecture is local in that the rescaling of a neutral pixel is a function solely
of the information in a patch in (η, φ)-space around that pixel. The size of this patch can
be controlled by tuning the filter sizes and number of layers in the architecture. Further, due
to weight-sharing in convolutional layers, the same function is applied for all pixels. Building
this locality and translation invariance into the architecture ensures that the algorithm learns
a universal pileup mitigation technique, while carrying the benefit of drastically reducing the
number of model parameters. Indeed, the PUMML architecture used in this study has only 4,711
parameters, which is small on the scale of deep learning architectures, but serves to highlight
the effectiveness of using modern machine learning techniques (such as convolutional layers) in
high energy physics without necessarily using large or deep networks.

η
φ

b
ea

m

Leading vertex charged

Pileup charged

Total neutral

Leading vertex neutral
Inputs to NN ︸ ︷︷ ︸

10 filters ×2

Figure 1: An illustration of the PUMML framework. The input is a three-channel image:
blue/purple represents charged radiation from the leading vertex, green is charged pileup
radiation, and yellow/orange/red is the total neutral radiation. The resolution of the charged
images is higher than for the neutral one. These images are fed into a convolutional layer with
several filters whose value at each pixel is a function of a patch around that pixel location in the
input images. The output is an image combining the pixels of each filter to one output pixel.

2. Performance
To test the PUMML algorithm, we consider qq̄ light-quark-initiated jets coming from the decay
of a scalar with mass mφ = 500 GeV. Events were generated using Pythia 8.183 [14] with the
default tune for pp collisions at

√
s = 13 TeV. Pileup was generated by overlaying soft QCD

processes onto each event. Final state particles except muons and neutrinos were kept. The
events were clustered with FastJet 3.1.3 [15] using the anti-kt algorithm [16] with a jet radius of
R = 0.4. A parton-level pT cut of 95 GeV was applied and up to two leading jets with pT > 100
GeV and η ∈ [−2.5, 2.5] were selected from each event. All particles were taken to be massless.

Samples were generated with the number of pileup vertices ranging from 0 to 180. Since the
model must be trained to fix its parameters, the learned model depends on the pileup distribution
used for training. For our pileup simulations, we trained on a Poisson distribution of NPUs with
mean 〈NPU〉 = 140. For robustness studies, we also tried training with NPU= 140 for each
event or NPU= 20 for each event. For comparison, we show the performance of two powerful
and widely used constituent-based pileup mitigation methods: PUPPI [17] and SoftKiller [18].
In both cases, default parameter values were used: R0 = 0.3, Rmin = 0.02, wcut = 0.1,
pcut

T (NPU) = 0.1 + 0.007×NPU (PUPPI), grid size = 0.4 (SoftKiller). Variations in the PUPPI
parameters did not yield a large difference in performance. Both PUPPI and SoftKiller were
implemented at the particle level and then discretized for comparison with PUMML.

To evaluate the performance of different pileup mitigation techniques, we compute several
observables and compare the true values to the corrected values of the observables. To facilitate
a comparison with PUMML, which outputs corrected neutral calorimeter cells rather than lists
of particles, a detector discretization is applied to the true and reconstructed events. Our
comparisons focus on the following four jet observables:

• Jet Mass: Invariant mass of the leading jet.

• Dijet Mass: Invariant mass of the two leading jets.

• Energy Correlation Functions, ECF
(β)
N [19]: Specifically, we consider the logarithm of

the two- and three-point ECFs with β = 4.

As a measure of pileup mitigation effectiveness, we show the distributions of the per-event
percent error in reconstructing the true values of the observables in Fig. 2. A distribution more
peaked around zero indicates better reconstruction performance. PUMML outperforms the
other pileup mitigation techniques by this metric, successfully reconstructing jet substructure
observables such as the jet mass and the energy correlation functions.

3. Opening the black box
While it is generally very difficult to determine what a network is learning, one possible probe
is to examine the weights of the filter layers in the convolutional network. For our full network,
these weights are complicated and the subtractor that the network learns is difficult to probe
analytically. Instead, we trained a simplified PUMML network with a single 12× 12 pixel filter,
which spans 3×3 neutral pixels, with no bias term. The different channels of this filter are shown
in Fig. 3. The neutral filter clearly selects the relevant neutral pixel for subtraction, while the
charged pileup filter is approximately uniform (with the value dependent on the specific choice of
loss function and activation function), and the charged leading vertex filter does not significantly
contribute.

The filter values motivate the following parameterization of what PUMML is learning:

pN,LV
T = 1.0 pN,total

T − β pC,PU
T + 0.0 pC,LV

T , (2)

for some O(1) constant β, where pN,LV
T , pN,total

T , pC,PU
T , and pC,LV

T are the neutral-pixel-level
transverse momenta of the neutral leading-vertex particles, all neutral particles, charged pileup

100 50 0 50 100
Jet Mass Percent Error, Centered

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

SoftKiller
PUPPI
PUMML

15 10 5 0 5 10 15
Dijet Mass Percent Error, Centered

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

SoftKiller
PUPPI
PUMML

40 20 0 20 40
ln ECF(= 4)

N = 2 Percent Error, Centered

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

SoftKiller
PUPPI
PUMML

40 20 0 20 40
ln ECF(= 4)

N = 3 Percent Error, Centered

Cr
os

s-
se

ct
io

n
(n

or
m

al
ize

d)

SoftKiller
PUPPI
PUMML

Figure 2: Distributions of the percent error between reconstructed and true values for leading

jet mass (top left), dijet mass (top right), ln ECF
(β=4)
N=2 (bottom left), and ln ECF

(β=4)
N=3 (bottom

right) for the considered pileup subtraction methods with Poissonian 〈NPU〉 = 140 pileup. All
distributions are centered to have median at 0. The improved reconstruction performance of
PUMML is highlighted by its taller and narrower peaks.

particles, and charged leading-vertex particles, respectively. The values 1.0 and 0.0 in Eq. 2 are
stable (to the 0.05 level) under variations in the loss and activation functions. This is reassuring
as the learned subtractor is thereby robust in the NPU → 0 limit despite begin trained on
〈NPU〉 = 140.

Eq. 2 is remarkably similar to the physically-motivated formula used in Jet Cleansing [20].
Cleansing is built on the observation that since pileup is the incoherent sum of many separate
scattering events, its variance is smaller than the variance of the radiation from the leading-
vertex. Thus, it is better to estimate pN,PU

T from pC,PU
T than to estimate pN,LV

T from pC,LV
T . The

simplest form of Cleansing (Linear Cleansing) gives the formula:

pN,LV
T = pN,tot

T −
(

1

γ0
− 1

)
pC,PU
T , (3)

where γ0 is the average ratio of charged pT to total pT in a subjet. Thus this simple one 12× 12
filter PUMML network is learning a subtractor of the same parametric form as Linear Cleansing.

Neutral Total Filter

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Charged Pileup Filter

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
Charged Leading Vertex Filter

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3: Filter weights for a simple PUMML network with a single 12 × 12 filter and a
ReLU activation function trained with 〈NPU〉 = 140. The network has selected the relevant
neutral pixel, turned off the charged leading vertex contribution, and is using the charged pileup
information uniformly.

4. Conclusions
In this paper, we have introduced the first application of machine learning to the critically
important problem of pileup mitigation at hadron colliders. We have phrased the problem of
pileup mitigation in the language of a machine learning regression problem. The method we
introduced, PUMML, takes as input the transverse momentum distribution of charged leading-
vertex, charged pileup, and all neutral particles, and outputs the corrected leading vertex neutral
energy distribution. We demonstrated that PUMML works at least as well as, and often better
than, the competing algorithms PUPPI and SoftKiller in their default implementations.

To prevent the model from learning simulation artifacts, it is preferable to train on actual
data rather than simulation. In many machine learning applications in collider physics, obtaining
truth-level training samples in data is a substantial challenge. To overcome this challenge in
classification tasks, Refs. [21] and [22] introduce an approach to train from mixed samples with
different class proportions. For PUMML and pileup mitigation more broadly, a more direct
method to train on data is possible. To simulate pileup, we overlay soft QCD events on top of a
hard scattering process, both generated with Pythia. Experimentally, there are large samples of
minimum bias and zero-bias (i.e. randomly triggered) data. There are also samples of relatively
pileup-free events from low luminosity runs. Thus we can construct high-pileup samples using
purely data. This kind of data overlay approach, which has already been used by experimental
groups in other contexts [23, 24], could be perfect for training PUMML with data. Therefore,
an implementation of ML-based pileup mitigation in an actual experimental setting could avoid
mis-modeling artifacts during training, thus adding more robustness and power to this new tool.

Acknowledgments
The authors would like to thank Philip Harris, Francesco Rubbo, Ariel Schwartzman, Nhan
Tran, and Jesse Thaler for helpful conversations. PTK and EMM would like to thank the MIT
Physics Department for its support. Computations in this paper were run on the Odyssey cluster
supported by the FAS Division of Science, Research Computing Group at Harvard University.
This work was supported by the U.S. Department of Energy, Office of Science under contracts
DE-AC02-05CH11231 and DE-SC0013607. Additional support was provided by the Harvard
Data Science Initiative. Cloud computing resources were provided through a Microsoft Azure
for Research award.

References
[1] Khachatryan V et al. (CMS) 2017 JINST 12 P02014 (Preprint 1607.03663)
[2] Aaboud M et al. (ATLAS) 2017 (Preprint 1703.09665)
[3] Komiske P T, Metodiev E M, Nachman B and Schwartz M D 2017 (Preprint 1707.08600)
[4] Cogan J, Kagan M, Strauss E and Schwarztman A 2015 JHEP 02 118 (Preprint 1407.5675)
[5] de Oliveira L, Kagan M, Mackey L, Nachman B and Schwartzman A 2016 JHEP 07 069 (Preprint

1511.05190)
[6] Komiske P T, Metodiev E M and Schwartz M D 2017 JHEP 01 110 (Preprint 1612.01551)
[7] Kasieczka G, Plehn T, Russell M and Schell T 2017 JHEP 05 006 (Preprint 1701.08784)
[8] de Oliveira L, Paganini M and Nachman B 2017 (Preprint 1701.05927)
[9] Paganini M, de Oliveira L and Nachman B 2017 (Preprint 1705.02355)

[10] Chollet F 2015 Keras
[11] Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley D and

Bengio Y 2010 Proc. 9th Python in Science Conf pp 1–7
[12] He K, Zhang X, Ren S and Sun J 2015 Proceedings of the IEEE international conference on computer vision

pp 1026–1034
[13] Kingma D and Ba J 2014 arXiv preprint arXiv:1412.6980
[14] Sjöstrand T, Ask S, Christiansen J R, Corke R, Desai N, Ilten P, Mrenna S, Prestel S, Rasmussen C O and

Skands P Z 2015 Comput. Phys. Commun. 191 159–177 (Preprint 1410.3012)
[15] Cacciari M, Salam G P and Soyez G 2012 Eur. Phys. J. C72 1896 (Preprint 1111.6097)
[16] Cacciari M, Salam G P and Soyez G 2008 JHEP 04 063 (Preprint 0802.1189)
[17] Bertolini D, Harris P, Low M and Tran N 2014 JHEP 10 059 (Preprint 1407.6013)
[18] Cacciari M, Salam G P and Soyez G 2015 Eur. Phys. J. C75 59 (Preprint 1407.0408)
[19] Larkoski A J, Salam G P and Thaler J 2013 JHEP 06 108 (Preprint 1305.0007)
[20] Krohn D, Schwartz M D, Low M and Wang L T 2014 Phys. Rev. D90 065020 (Preprint 1309.4777)
[21] Dery L M, Nachman B, Rubbo F and Schwartzman A 2017 JHEP 05 145 (Preprint 1702.00414)
[22] Metodiev E M, Nachman B and Thaler J 2017 (Preprint 1708.02949)
[23] Marshall Z, Collaboration A et al. 2014 Journal of Physics: Conference Series vol 513 (IOP Publishing) p

022024
[24] Haas A (ATLAS) 2017 Atlas simulation using real data: Embedding and overlay Tech. rep.

