
Hydra: a C++11 framework for data analysis in

massively parallel platforms

A A Alves Júnior1 and M D Sokoloff2

Physics Department - University of Cincinnati
400 Geology/Physics Building PO Box 210011 Cincinnati, OH 45221-0011 United States

E-mail: aalvesju@cern.ch1 and sokoloff@ucmail.uc.edu2

Abstract. Hydra is a header-only, templated and C++11-compliant framework designed to
perform the typical bottleneck calculations found in common HEP data analyses on massively
parallel platforms. The framework is implemented on top of the C++11 Standard Library and
a variadic version of the Thrust library and is designed to run on Linux systems, using OpenMP,
CUDA and TBB enabled devices. This contribution summarizes the main features of Hydra. A
basic description of the overall design, functionality and user interface is provided, along with
some code examples and measurements of performance.

1. Introduction

Despite the ongoing efforts of modernization, a large fraction of the software used in High Energy
Physics (HEP) is legacy. It mostly consists of libraries assembling single threaded, Fortran and
C++03 mono-platform routines. Concomitantly, HEP experiments keep collecting samples with
unprecedented large statistics, while data analyses become increasingly complex. Even deploying
powerful computers, it is common to spend days performing calculations to reach a result, and
they often need re-tuning anyway.

On the other hand, computer processors will not increase clock frequency anymore in order
to reach higher performance. Indeed, the current road-map to improve overall performance
is to deploy different levels of concurrency. One effect of which is the proliferation of multi-
thread friendly and multi-platform environments among HPC data centers. Unfortunately,
HEP software is not completely prepared yet to fully exploit concurrency and to deploy more
opportunistic computing strategies.

Hydra proposes a computing model to approach these issues. The Hydra framework
provides collection of parallelized high-level algorithms, addressing some of of typical computing
bottlenecks commonly found in HEP, and a set of optimized containers and types, through
a modern and functional interface, allowing to enhance HEP software productivity and
performance, keeping the portability between NVidia GPUs, multi-core CPUs and other devices
compatible with CUDA, TBB and OpenMP computing models.

2. Design highlights

Hydra is a C++11 template framework organized using a variety of static polymorphism idioms
and patterns. This ensures the predictability of the stack size at compile time, which is critical

for stability and performance when running on GPUs and minimizes the overhead introduced
by the user interface when engaging the actual calculations. Furthermore, the combination of
static polymorphism and templates allows exposure of the maximum amount of code to the
compiler, in the context in which the code will be used, contributing to activate many compile
time optimizations that could not be accessible otherwise. Hydra’s interface and implementation
details extensively deploy patterns and idioms that enforce thread-safety and efficient memory
access and management. The following list summarizes some of the main design choices adopted
in Hydra:

• Hydra provides a set of optimized STL-like containers that can store multidimensional
data-sets using SoA1

• Data handled using iterators and all classes manage allocated resources using RAII idiom.

• The framework is type and thread-safe.

• No limitation on the maximum number of dimensions that containers and algorithms can
handle.

The types of devices in which Hydra can be deployed are classified by back-end type, according
to the device compatibility with certain computing models. Currently, Hydra supports four back-
ends, which are CPP, OpenMP, CUDA and TBB. Code can be dispached and executed in all
supported back-ends concurrently and asynchronously in the same program, using the suitable
policies represented by the symbols hydra::omp::sys, hydra::cuda::sys, hydra::tbb::sys
, hydra::cpp::sys, hydra::host::sys and hydra::device::sys. These policies define the
memory space where resources should be allocated to run algorithms and store data.

For mono-back-end applications, source files written using Hydra and standard C++ compile
for GPU and CPU just exchanging the extension from .cu to .cpp and one or two compiler flags.
There is no need for refactoring code.

3. Basic features

Currently, Hydra provides a collection of parallelized high-level algorithms, addressing some
computing-intensive tasks commonly found in data analyses in HEP. The available high-level
algorithms are listed below:

• Multidimensional p.d.f. sampling.

• Parallel function evaluation on multidimensional data-sets.

• Five fully parallelized numerical integration algorithms: Genz-Malik, self-adaptive and
static Gauss-Kronrod quadratures, plain, self-adaptive importance sampling and phase-
space Monte Carlo integration.

• Phase-space Monte Carlo generation and sampling.

• Interface to ROOT::Minuit2[1] minimization package, allowing to accelerate maximum
likelihood fits over multidimensional large data-sets.

• Parallel implementation of the S-Plots[2] technique prescription, for statistical unfolding
data distributions.

Hydra also provides two multidimensional containers optimized to store large POD data-sets
with dimensions represented by numbers with the same or different types. A significant number
of facilities are also available to filter, copy and perform other operations. In the following
subsections, some of the basic features are described.

1 Structure of arrays or SoA is a layout separating elements of a structure into one parallel array per field. This
ease the data manipulation with SIMD instructions and, if only a specific field of the structure is needed, only
this field can to be iterated over, allowing more data to fit onto a single cache line.

struct Gaussian : public hydra : : BaseFunctor<Gaussian , double ,2>
{

// implementing the Eva luate () method o f the Gaussian func to r .
// unsigned i n t n : number o f arguments
// doub le ∗x : po in t e r to the array o f arguments

h o s t d e v i c e
inl ine double Evaluate (unsigned int n , double∗ x) {

double m2 = x [0] ∗ par [0] ∗ par [0] ;
double s 2 = par [1] ∗ par [2] ;

return exp(−m2/ (2 . 0 ∗ s 2)) /(s q r t (2 . 0∗ s 2 ∗ pi)) ;
}

} ;

Listing 1. Example of implementation of a functor representing a Gaussian function in Hydra.
The access to the Hydra interface and type information is implemented deriving the functor from
the hydra::BaseFunctor<Functor, ReturnType, NParameters> base class. The functor’s
parameters, in this case the mean and sigma of the Gaussian, are accessible in the scope of the
functor via the symbols _par[i] or in the functor instantiation scope via accessors SetParameter
(...) and GetParameter(...).

3.1. Functors and arithmetic operators

In all situations where custom calculations need to be performed, Hydra framework instantiates
algorithms to call the user’s code that is passed using functors or C++11 lambdas. Hydra
adds features and type information to generic functors using the CRTP idiom. To be compliant
with Hydra’s interface, the functors need to derive from the hydra::BaseFunctor<Functor,

ReturnType,NParameters> class and to implement the __host__ __device__ Evaluate(...)

method. Functor’s values can be cached. The Listing 1 shows how to implement a simple functor
to calculate a Gaussian function.

3.2. C++11 Lambdas

The user can define a C++11 lambda function and convert it into a Hydra functor using the
function hydra::wrap_lambda(). The wrapped lambda will have access to all functionality of
Hydra. The Listing 2 shows a basic example of usage for this functionality. Hydra also supports
the usage of C++11 lambdas as fit models. In this case, the lambda function needs to have a
different signature and the list of fit parameters needs to be passed to hydra::wrap_lambda().

3.3. Arithmetic operators

Hydra overloads the basic arithmetic operators for all objects deriving from hydra::

BaseFunctor. Composition of functors is supported as well. For example, the lines shown
in Listing 3 are completely legal C++11 code.

3.4. Containers

Hydra framework provides one dimensional STL-like vector container for each supported
back-end, aliasing the underlying Thrust types. Beyond this, Hydra implements two
native multidimensional containers: hydra::multivector and hydra::multiarray. In these
containers, the data corresponding to each dimension is stored in contiguous memory regions

. . .
double two = 2 . 0 ;
// de f i n e a s imple lambda and capture ”two”
auto my lambda = [=] h o s t d e v i c e (unsigned int n , double∗ x)

{
return two∗ s i n (x [0]) ;

} ;
// conver t i t i n t o a Hydra func to r
auto my lambda wrapped = hydra : : wrap lambda (my lambda) ;
. . .

Listing 2. Example of usage of hydra::wrap_lambda() to wrap a simple lambda function
multiplying sin(x) by two.

. . .
// ba s i c a r i t hme t i c opera t i ons
auto A plus B = A + B;
auto A minus B = A − B;
auto A times B = A ∗ B;
auto A per B = A/B;
//any composi t ion o f b a s i c opera t i ons
auto any functor = (A − B) ∗(A + B) ∗(A/C) ;
// C(A,B) i s r epre sen t ed by :
auto compose functor = hydra : : compose (C, A, B)
. . .

Listing 3. Using overloaded arithmetic operators to build up expressions using functors. If A,
B and C are Hydra functors, the code above is completely legal.

and when the container is traversed, each entry is accessed as a hydra::tuple, where each field
holds a value corresponding to a dimension. Both classes implement an interface completely
compliant with a STL vector and also provides constant and non-constant accessors for the single
dimensional data. The container hydra::multivector is suitable to store data-sets where the
dimensions are represented by entries with different POD types. hydra::multiarray is designed
to store data-sets where all dimensions are represented by the same type. Data is copiable across
different back-ends.

4. Code examples and performance measurements

4.1. Multidimensional numerical integration

The VEGAS algorithm[3] samples the integrand and adapts itself, so that the sampling points
are concentrated in the regions that make the largest contribution to the integral. Hydra’s
implementation follows the structure of the corresponding GSL algorithm, but parallelizes the
integrand evaluations and accumulations in each iteration. There is no limit in the number
of dimensions the integrator can handle. Figure 1 shows the performance of Hydra’s VEGAS
implementation.

4.2. Phase-Space Monte Carlo

Phase-Space Monte Carlo simulates the kinematics of a particle with a given four-momentum
decaying to a n-particle final state, without intermediate resonances. Samples of phase-space

Number of samples
500 1000 1500 2000 2500 3000 3500 4000 4500

310×

D
ur

at
io

n
[m

s]

0

5000

10000

15000

20000

25000

30000

Number of samples
500 1000 1500 2000 2500 3000 3500 4000 4500

310×

S
pe

ed
-u

p
G

P
U

 v
s

C
P

U

2

4

6

8

10

12

14

GPU
CPU
speed-up

Figure 1. Performance of Hydra’s VEGAS implementation as a function of the number of
integrand calls per iteration. The integrand is a 10-dimensional Gaussian distribution. The
GPU model is Tesla K40c and the CPU is Intel Xeon(R) CPU E5-2680 v3 @ 2.50GHz (one
thread).

//Masses o f the p a r t i c l e s
hydra : : Vector4R Mother (mother mass , 0 . 0 , 0 . 0 , 0 . 0) ;
double Daughter Masses [3] { daughter1 mass , daughter2 mass ,

daughter3 mass } ;
//Create PhaseSpace o b j e c t
hydra : : PhaseSpace<3> phsp (Mother mass , Daughter Masses) ;
// A l l o ca t e the conta iner f o r the even t s
hydra : : Events <3, device> events (ndecays) ;
//Generate
phsp . Generate (Mother , events . begin () , events . end ()) ;

Listing 4. This snippet shows how to use the Hydra’s phase-space Monte Carlo generator to
produce a sample with ndecays three-body decays.

Monte Carlo events are widely used in HEP studies where the calculation of phase-space volume
is required as well as a starting point to implement and to describe the properties of models
with one or more resonances or to simulate the response of the detector to decay’s products[4].
Hydra provides an implementation of the Raubold-Lynch method[4] and can generate the full
kinematics of decays with any number of particles in the final state. Sequential decays, evaluation
of model, production of weighted and unweighted samples and many other features are also
supported. Listing 4 shows how to use the phase-space Monte Carlo generator to produce a
sample with ndecays three-body decays. Figure 3 shows the phase-space generator performance
as a function of the sample size.

Number of events
1 2 3 4 5 6 7 8 9 10

610×

D
ur

at
io

n
[m

s]

1

10

210

310

Number of events
1 2 3 4 5 6 7 8 9 10

610×

S
pe

ed
-u

p
G

P
U

 v
s

C
P

U

50

100

150

200

250

300

GPU
CPU
speed-up

Figure 2. The performance of the phase-space generator as a function of the sample size. The
GPU model is Tesla K40c and the CPU is Intel Xeon(R) CPU E5-2680 v3 @ 2.50 GHz (one
thread).

4.3. Interface to Minuit2

Hydra implements an interface to ROOT::Minuit2 that parallelizes the FCN calculation [1]. This
dramatically accelerates the calculation over large data-sets. Hydra normalizes the pdfs on-the-
fly using analytical or numerical integration algorithms provided by the framework and handles
data using iterators.

Listing 5 shows how to build a simple model composed of two pdfs, respectively representing a
Gaussian and an exponential distributions. The model is used to perform an extended likelihood
fit. The FCN object provided by Hydra parallelizes the function calls in the back-end the data
is stored in. The processing of a sample with 20 million events takes 4.8 seconds in a Tesla K40c
and 299.8 seconds in a Intel Xeon(R) CPU E5-2680 v3 @ 2.50 GHz (one thread), resulting in a
speed-up of a factor ∼62x.

5. Summary

The basic design, performance and functionality of the header-only, C++11-compliant
framework Hydra have been introduced. Some of the basic interfaces and algorithms are
discussed in Section 3. The performance measurements for running some of Hydra’s algorithms
using CUDA and one CPU thread are discussed in Section 4, and show that Hydra can be

// a n a l y t i c a l i n t e g r a l f unc t o r s
GaussAna ly t i c Integ ra l Gauss Integra l (min , max) ;
ExpAna lyt i c Integra l ExpIntegra l (min , max) ;
// b u i l d the pd f s
auto Gaussian PDF = hydra : : make pdf (Gaussian , Gauss Integra l) ;
auto Exponential PDF = hydra : : make pdf (Exponential , ExpIntegra l) ;

//make a extended pdf model
std : : array<hydra : : Parameter ∗ , 2> y i e l d s {NGaussian , NExponential } ;
auto Model = hydra : : add pdfs (y i e l d s , Gaussian PDF , Exponentia PDF) ;
// ge t the FCN
auto Model FCN = hydra : : make log l i k ehood f cn (Model , data d . begin () ,

data d . end ()) ;
// pass the FCN to Minuit2
. . .

Listing 5. This code snippet shows how to build simple model composed by two pdfs,
respectively representing a Gaussian and an exponential distributions. The model is used to
perform a extended likelihood fit, able to predict the yields of each component. The FCN object
provided by Hydra, will parallelize the function calls in the back-end the data is stored.

data
Entries 2e+07

Mean 5.499

Std Dev 3.694

X
0 2 4 6 8 10 12 14

Y
ie

ld

100

200

300

400

500

600

700

800

900

310× data
Entries 2e+07

Mean 5.499

Std Dev 3.694

data
Entries 2e+07

Mean 5.499

Std Dev 3.694

Figure 3. Result of the extended unbined likelihood fit performed over a 20 million events
sample.

up to 250 times faster than conventional software, depending on the graphics card. For CPU
multi-threads back-ends, TBB and OpenMP, if the problem size is large and calculations pay
the cost of thread creation and destruction, the algorithms scale linearly with the number of
threads deployed. Since Hydra is header only, no additional building process needs to be done

beyond the inclusion of the required headers. Hydra has been presented at several conferences,
including NVidia’s GTC 2017[5]. It is currently being used in a data analysis aiming to measure
the charged Kaon mass at the LHCb Experiment at CERN[6]. The initial development of Python
bindings for Hydra was one of the projects of Google Summer of Code 2017[7].

Hydra is open source and released under GPL version 3 license. The project is hosted on
GitHub at https://github.com/MultithreadCorner/Hydra.

6. Acknowledgments

This work was performed with support from NSF Award PHY-1414736. NVidia provided K40
GPUs for our use through its University Partnership program.

References
[1] Minuit2 Package https://root.cern.ch/root/html/MATH_MINUIT2_Index.html

[2] Pivk M and Le Diberder F R 2005 Nucl. Instrum. Meth. A555 356–369 (Preprint physics/
0402083)

[3] Lepage G P 1978 Journal of Computational Physics 27 192 – 203 ISSN 0021-9991 URL
http://www.sciencedirect.com/science/article/pii/0021999178900049

[4] James F E 1968 (CERN) URL https://cds.cern.ch/record/275743

[5] Alves Junior A A 2017 GTC2017 (San José, US) Presentation ID S7340

[6] Alves Junior A A and Contu A 2017 Rare n Strange 2017: strange physics at LHCb (Santiago
de Compostela, Spain)

[7] Hydra.Python: python bindings for Hydra https://summerofcode.withgoogle.com/

dashboard/project/6669304945704960/overview/

https://github.com/MultithreadCorner/Hydra
https://root.cern.ch/root/html/MATH_MINUIT2_Index.html
physics/0402083
physics/0402083
http://www.sciencedirect.com/science/article/pii/0021999178900049
https://cds.cern.ch/record/275743
https://summerofcode.withgoogle.com/dashboard/project/6669304945704960/overview/
https://summerofcode.withgoogle.com/dashboard/project/6669304945704960/overview/

