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Abstract. We present a classification algorithm that applies the machine learning paradigm
of Learning from Label Proportions (LLP) [1] to enable learning on unlabelled data. Our
algorithm, Weakly Supervised Classification, receives as its only input the class proportions
of batches of data but makes per-instance classification decisions matching the performance of
fully supervised approaches. We apply our model to the problem of Quark-Gluon tagging and
show that it is robust to underlying mismodelling of the simulated data unlike fully supervised
learning.

1. Introduction
Classification problems abound in High Energy Physics; from Quark-Gluon tagging [2] and b-
tagging [3] to boosted W tagging [4], there is a strong need to discriminate the types of particles
produced by collision events. Traditionally, these classification problems are approached by
training a model that takes in individual feature-label pairs and learns to generalize from
the supervision provided to unseen instances. The feature-label pairs used for training are
generated via high fidelity Monte-Carlo (MC) simulations that model physical processes at
distances ranging from 10−25 meters all the way to the macroscopic dimensions of detectors.

Since these simulations are only approximate, the underlying physical processes are not always
perfectly model and as a consequence, the performance of classifiers trained via this approach
and applied to actual data on collision events are in some cases sub-optimal. Comparisons of
tagging efficiencies between data and simulation show large (10%−30%) differences for b-tagging
[5] quark/gluon tagging [6], boosted W tagging [7], and high pT top quark tagging [8]. Since
using collider data for supervised training is not an option due to the absence of labels, there is
the need to develop unsupervised or weakly supervised approaches that directly leverage collider
data.

In some cases, though the per-instance class labels for data are unknown, we know the
relative proportions in which the classes occur in. For example, at a fixed order in perturbation
theory, the probability for an outgoing parton to be a quark or a gluon depends on well-known
parton distribution functions and matrix elements. Relying only on the weak supervision of
class proportions and leveraging insights from the areas of Multiple Instance Learning (MIL) [9]



Figure 1: A rendering of the setup in section 2.1. The black distribution is obtained by binning
the features of all examples, both signal and background, in a batch. fA, fB give the background
to signal proportion in batches A and B respectively. The same bin i is chosen for in both
histograms for resolving the true distributions of classes A and B

and LLP we propose an algorithm that matches the performance of fully supervised classifiers.
More specifically, given a batch of data where only the relative proportions of classes are known,
we learn a per-instance mapping from features to labels under the constraint that statistics of
the predicted labels in a batch match the expected proportions.

2. Method
Though proportions are a much weaker learning signal than per-instance labels, we will prove in
the section that follows that it is a sufficient signal in finding a decision boundary that optimally
classifies the data.

2.1. Probability Density Functions from Fractions
We show the feasibility of our approach by providing an analytic solution to a simple 2-batch
problem where the class proportions are known. Consider two batches of data, A and B, each
of which contains a mixture of two classes {0,1} in proportions fA and fB respectively. Each
input is a feature vector xi ∈ Rd. In order to identify the two components, we need to resolve
the Probability Density Functions (PDFs) corresponding to the individual classes. To do this,
we first build the PDF corresponding to each of the individual batches. By considering m bins
for each dimension d, we adopt a binning strategy, creating a 1-dimensional histogram (with
d×m bins) representing a density function over feature bins. Since we know that each batch is
a mixture of inputs from both classes, the height of a particular bin i is a linear combination of
the true heights h0,i and h1,i for each class in their relative proportions. Figure 1 illustrates the
setup. Using hA,i and hB,i as the height of bin i in batches A and B respectively, formally

hA,i = fAh0,i + (1− fA)h1,i

hB,i = fBh0,i + (1− fB)h1,i



Given the system of linear equations above, we can solve for the independent heights of each
class in each bin i, h0,i and h1,i respectively. This allows us to extract the PDFs for each of
the individual classes. Having obtained the PDFs for each class, we can easily build an optimal
classifier that distinguishes the two classes based on the likelihood ratios.

The above procedure provides an analytic approach to learning from batch proportions. It
is however not a practical approach. Specifically, the binning strategy is intractable when the
feature space is large. The system of equations set up also becomes over-constrained when
more than two batches of proportions are provided, which means there might not exist an exact
solution. We get around both these problems by using a neural network to approximate both
the binning strategy and the optimal decision function.

2.2. Weakly Supervised Classifiers
The supervised binary classification problem is set up as follows. Given a training set T ,
consisting of Mtrain tuples (xi, yi)

Mtrain where xi is a feature vector of an instance and yi is
the corresponding true label, we learn a classifier Fsup which generalizes to a unseen set of Mtest

examples D = {xj}Mtest of unknown labels. To learn Fsup we set up a loss function lsup that is
independently evaluated for each member of a batch of data N.

Fsup = argminF
∑
i

lsup

(
F(xi), yi

)

In the weakly supervised setup however, the training set consists of tuples (Xj
B, yj) where

Xj
B is the jth batch of examples containing Mbatch instances. The label yj in this case is the

proportions of members of Xj
B that belong to class A. We still need the classifier to produce a

per-instance binary decision though it is fed batched data. To achieve this, we introduce a loss
that ties together the predictions of a batch. That is, Fweak makes a prediction for each member
of the batch, but the loss, lweak is evaluated on how well the distribution of batch predictions
match the expected proportions yj . More formally,

Fweak = argminF
∑
j

lweak

(∑
xi∈Xj

b
F(xi)

Mbatch
, yj

)

3. Results
To test our approach, we apply weak supervision to the quark-gluon tagging problem. We
generate a dataset of 2 → 2 quark-gluon scattering (dijet) events, simulated using the Pythia
8.18 event generator [10]. Jets are clustered using the anti − kt algorithm [11] with distance
parameter R = 0.4 via the FastJet 3.1.3 [12] package. Jets are classified as quark- or gluon-
initiated by considering the type of the highest energy quark or gluon in the full generator event
record that is inside a 0.3 radius of the jet axis. For simplicity, one transverse momentum range
is considered: 45 GeV < pT < 55 GeV. Additionally, there is a pseudo-rapidity requirement
that mimics the usual detector acceptance for charged particle tracking: |η| < 2.1. Heuristically,
gluons have twice as much strong-force charge as quark jets, resulting in more constituents and
a broader radiation pattern. More precisely, at leading logarithm the ratio of the average gluon
and quark jet constituent multiplicity is equal to the ratio of the QCD color-factor (Casimir )
associated with quarks (CF) and gluons (CA): CA/CF = 9/4 ≈ 2 [13], [14]. Due to Casimir
scaling, the ROC curve for any pT and angle-weighted moments of the jet radiation pattern
is set by CA/CF [15]. The following variables are useful for quark/gluon discrimination: the
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Figure 2: In (a) Fully and Weakly supervised classifiers are trained on identical simulated
data and evaluated on a test sample drawn from the same population. The weakly supervised
classifier matches the performance of the fully supervised one. The curves corresponding to the
three input observables used as discriminant are shown as reference. In (b) Fully supervised
classifier (blue line) is trained on a labeled simulated training sample. The weakly supervised
classifier (red line) is trained on an unlabeled pseudo-data training sample. In both cases, the
performance is evaluated on the same pseudo-data test sample. The ratios to the performance
of a fully supervised classifier trained on a labeled pseudo-data sample are shown in the bottom
pad

number of jet constituents n, the first radial moment in pT (jet width) w, and the fraction of
the jet pT carried by the leading anti − kT R = 0.1 subjet f0. The constituents i considered
for computing n and w are the hadrons in the jet with pT > 500MeV . A weakly supervised
classifier with one hidden layer of size 30 is trained by considering 12 bins of the distribution
of the absolute difference in pseudorapidity between the two jets [16]. The proportion of quark
initiated jets varies between 0.21 and 0.32

As can be seen from Figure 2(a) our classifier achieves the same performance as a fully
supervised classifier. The key application we envision for Weak Supervision is the circumvention
of the use of imperfect simulation data to build classifiers for high energy physics. To highlight
this, we setup an experimental scenario to evaluate the performance of a fully supervised classifier
trained on simulation but evaluated on pseudo-data against a weakly supervised classifier trained
directly on pseudo-data. We build the pseudo-data samples by distorting the probability
distributions of n and w in the training sample to emulate the difference in efficiency measured in
[2] between simulation and data. As can be seen from Figure 2(b) weak supervision outperforms
fully supervised, demonstrating ability to circumvent mis-modeling issues presented by training
on simulated data.

The demonstrations provided so far have been on relatively low dimensional inputs. Weak
supervision has also been applied to high dimensional jet images for the Q-G problem, achieving
competitive results as in [17]

If you wish to replicate our findings, please find the code for Weak Supervision and the
experiments described at this link : https://doi.org/10.5281/zenodo.322813

4. Conclusion
We have presented a new approach to classification in High Energy Physics in cases where class
proportions are known but individual labels are not readily available. This weakly supervised

 https://doi.org/10.5281/zenodo.322813
https://doi.org/10.5281/zenodo.322813


classification has broad applicability and has been demonstrated in one important discrimination
task in high energy physics: quark versus gluon jet tagging. Our method serves to lay the
groundwork for circumventing the mis-modelling issues that plague training on data from
simulations, allowing us to train directly on collider data.
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