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Abstract. The modern machine learning revolution holds great promise for high energy
physics. Enormous detectors have been designed to search for rare signals in order to expose
the smallest distance scales in nature. Modern tools like deep neural networks will be required
to fully explore the sub-nuclear universe. Using the radiation pattern inside high energy jets
as an example, we show how neural networks are being used in new ways to produce a class of
techniques that were not previously possible.

1. Introduction

Advances in machine learning have led to a “deep learning revolution” that has resulted in
many tools and techniques for quickly and reliably training sophisticated neural networks with
many layers. Complex neural networks can learn directly from low-level features that reside
in the high-dimensional datasets common in large experiments. New ideas for deep neural
networks (DNN) are being developed at a fast pace, but Ref. [1–3] are rather comprehensive
introductions/reviews.

In many applications to large experiments like ATLAS and CMS at the Large Hadron
Collider (LHC), DNNs are ‘simply’ replacing shallower learning algorithms. For example, the
ATLAS experiment has recently used deep neural networks to combine a small number of high-
level features for highly Lorentz boosted boson, top quark, and bottom quark tagging [5–7].
Unsurprisingly, performance is essentially the same as training shallower classifiers with the
same inputs. Deep neural networks are most useful when the relevant dimensionality of the
inputs is very large, ∼ O(100) or bigger.

Two areas from large experiments in the high energy physics community making use of high
dimensional data with deep neural networks are neutrino physics and jet physics. Neutrino
physics detectors require a large volume to compensate for the small interaction rate. The data
from liquid argon time projection chambers (e.g. NOνA, DUNE [8], MicroBooNE [9]) or vats
of liquid scintillator surrounded by photomultiplier tubes (e.g. JUNO [10]) can be represented
as a series of images with translationally invariant features. This makes convolutional neural
networks (CNNs) a natural choice for this setting and there are now many proposed and applied
techniques of CNN’s to neutrino physics. Jets are collimates sprays of particles resulting from
high energy quark and gluon production. The radiation pattern inside jets contains a wealth of
information about the particle that initiated them. There are many proposals for using deep
learning with this radiation pattern; see Ref. [4] for a recent review. The remainder of this



talk focuses on representing jets as an image [20]1 to illustrate the application of deep neural
networks for classification [21–26], regression [28], and generation [29–31].

2. The Jet Image and Special Relativity

Jet images are a two-dimensional fixed representation of the radiation pattern inside a jet. Most
applications with jet images use a gray-scale digital image where the pixel intensity corresponds
to the momentum deposited in a particular region of the detector. Figure 1 illustrates how the
energy pattern in the cylindrical coordinates of a typical collider physics detector are unrolled
to form a two-dimensional jet image. Unlike natural images of scenery or faces, jet images do
not have any clear sharp features, do not have smooth pixel intensities, and are mostly empty
(low occupancy). This is a challenge for applying standard techniques out-of-the-box.
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Figure 1. Left: a transverse view of a particle collision where the incoming particles are
into/out of the page. Jets are collimated sprays of particles that are measured as localized high
energy deposits. The cylindrical geometry is unrolled to form a jet image; Right: a typical jet
image from a Lorentz boosted W boson decay. The pixel intensity is the momentum transverse
to the incoming particles (pT). Image reproduced from Ref. [30].

Despite the differences with natural images, jet images are a powerful way to represent the
radiation pattern inside a jet because one can directly visualize the physical information that
is available for learning. For example, Fig. 2 shows two jet images where a clear physical story
can describe their differences and builds a foundation for applying sophisticated techniques for
exploiting the differences between the images.

The first step in any image-processing analysis is image pre-processing. The symmetries of
spacetime are known symmetries of jet images. Removing them during pre-processing can help
machines to learn faster and smarter, but must be used with caution. For example, Fig. 3 shows
how jet image rotations (which are not proper rotations in space) can distort the information
content of a jet image. Other standard pre-processing steps like image normalization are known
to distort the information inside a jet image [21]. Some pre-processing can nonetheless be useful
and is an opportunity to inject domain knowledge.

1 There are also many proposals for non-image-based techniques. See e.g. [11–19].
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Figure 2. The average over many jet images from a boosted Higgs boson decay into two bottom
quarks (left), a gluon 3splitting into two bottom quarks (right), and the difference between the
left and right images (center). The two energy lobes in the left and right images represent the
‘subjets’ formed from nearby quarks. The Higgs boson does not participate in the strong force
and therefore the quarks it produces have equal and opposite strong-force-charge; they thus
radiate like a dipole. In contrast, the gluon has net strong force charge and therefore radiates
much more away from the two energy lobes.
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Figure 3. The jet mass of an image is derived from the four-vector sum of the pixel intensities,
each treated as massless. The jet mass is a powerful feature for distinguishing interesting jets
from generic jets. The images shown here have a simplified ‘jet’ with only two hit pixels.
Rotating the image by π/4 does not preserve the image mass if the pixel intensities are left
unchanged. This introduces a rotation-dependent smearing to the jet mass that can reduce the
discrimination potential of a classifier.

3 Technically, this is implemented as a Higgs boson decaying into two bottom quarks where the color strings are
‘by-hand’ distorted to make this Higgs act like a gluon in its radiation pattern. In this way, the Higgs kinematics
are the same between the two samples. Due to color-connections between the gluon-like Higgs and the beam
remnants, there is a dependence on the rest of the event for the right plot but not the left plot.



3. Classification

The most basic machine learning task is differentiating between a small number of categories
(classification). Machine learning algorithms can be trained to identify the particle that
originated the jet by analyzing the radiation pattern in the jet image. Figure 4 shows a Receiver
Operating Characteristic (ROC) for the binary classification task of distinguishing jets from
Lorentz boosted W bosons and generic quarks/gluons. The classifier is trained directly on
the pixel intensities without any other guidance (aside from pre-processing). A reoccurring
theme is that the machine learning algorithm can match or out-perform existing techniques.
Understanding what the machine has learned beyond existing algorithms is a very important
and active subject of research.

Modern Deep NN’s for Classification
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Figure 4. An ROC curve that shows the tradeoff between the probability to correctly identify
a Lorentz boosted W boson jet and the probability to mis-classify a generic quark/gluon jet.
Various deep neural network architectures are shown in the shaded region. The other observables
are known (simple) features used in existing techniques for jet classification. Reproduced from
Ref. [21].

One opportunity that is also a key challenge of deep neural networks is their ability to utilize
subtle features within a jet. Traditional classification techniques in high energy physics use fully
supervised learning where labeled examples are produced from simulation. However, subtle
features are difficult to accurately model and therefore the classifier trained on simulation may
be sub-optimal when applied on (unlabeled) data. There are now multiple proposals for training
with data directly [32–34]. One proposal based on weak supervision is shown in Fig. 5.

4. Regression

A natural generalization of classification is to cases when there are (possibly infinitely) many
classes. Jet image-based regression techniques have recently been applied for image de-noising.
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tion of quark initiated jets varies between 0.21 and 0.32. Figure 3 shows that, while the individual

observables perform di↵erently in the high or low gluon e�ciency (true positive rate) regimes, their

combination in a NN gives consistently better performance. The weakly supervised classifier matches

the performance of the fully supervised NN, despite only knowing sample proportions instead of indi-

vidual event labels. By construction the weakly supervised classifier is also robust against a realistic

amount of mis-modeling in the input variables. This feature is tested by building a pseudo-data sample

where the probability distributions of n and w are distorted in the training sample to emulate the

di↵erence in e�ciency measured in Ref. [6]. The study in Ref. [6] found that a classifier extracted from

simulation is more powerful than one extracted from the data. This is reflected in the results presented

in the right plot of Fig. 3. When a fully supervised classifier is trained on a sample generated with

the same distribution as the test sample (mimicking training and testing on simulation), it achieves a

better performance than when trained on the original sample and tested on the distorted pseudo-data

(mimicking training on simulation and testing on data). In contrast, the weakly supervised classifier

can be trained directly on the distorted pseudo-data sample (representing the data) so is insensitive to

the mismodeling of the input variables. This results in a 10% bias from the standard procedure that

is avoided by the weakly supervised classifier. Even larger di↵erences may be expected from this and

other classification tasks that utilize even more input features or are more mis-modeled. The weakly

supervised classifier is robust and outperforms the standard supervised learning trained on simulation.

Figure 4: ROC curves for instance classification using five individual features and then combined

using a fully supervised network and the weakly supervised classifier.

4 Conclusions

We have presented a new approach to classification with NN in cases where class proportions are

known but individual labels are not readily available. This weakly supervised classification has broad

applicability and has been demonstrated in one important discrimination task in high energy physics:

quark versus gluon jet tagging. In the quark/gluon and related contexts, weakly supervised classifi-

cation provides a robust and powerful approach because it can be directly trained on examples from

(unlabeled) data instead of (labeled, but unreliable) simulation. The examples presented so far have

used a small number of input features to illustrate the ideas, but there is no algorithmic limitation on

– 6 –

Weak Supervision

Weakly supervised NN, AUC=0.93
Fully supervised NN, AUC=0.93

Figure 5. An ROC curve that shows how the performance of a traditional fully supervised
learner with per-example labels can be matched with a technique that only knows the class
proportions. Reproduced from Ref. [32].

At the LHC, many proton-proton collisions happen simultaneously, but only (at most) one is
interesting. Using information from different detectors, a noise image can be predicted from the
various measurements. The noise jet image can be subtracted from the original noisy image,
after which traditional or DNN-based classification can proceed. This is illustrated in Fig. 6.
Extensions, modifications, and variations of this idea are currently under study by the ATLAS
and CMS collaborations for estimating detector distortions to the signal pixel intensity and not
just the noise (‘jet energy scale’).

“Pileup Mitigation with 
Machine Learning”

Corrected Image Mass / True Image Mass

Figure 6. Top left: At the LHC, many collisions occur at the same time. Only one is of interest
and the particles produced by the other collisions are a source of noise. Applying a jet-image-
based CNN for de-noising (‘PUMML’) is very effective at correcting the jet mass back to the
value without noise. In comparison, existing techniques (‘Softkiller’ and ‘PUPPI’) introduce a
bias and have a worse resolution. Reproduced from Ref. [28].



5. Generation

Rounding out the applications of neural networks is generation, i.e. producing new images
which can be used for subsequent classification or inference. One technique that has gained
attention in high energy physics is the adversarial neural network (GAN) [35]. Neural networks
are simply (compositions of) functions, so a neural network generator is a mapping between
noise and structured images. In the GAN setup, this function from noise to structured images
is complemented by a classifier network that tries to distinguish generated images from real
images. The two networks are iteratively optimized and when the classifier is maximally
confused, the generator will be effective at producing realistic looking images. High energy
physics analysis relies heavily on physics-based simulation, but these simulators can be very slow
(up to O(min/event)). An exciting possibility is to use GANs to replace or augment physics-
based simulations in order to speed them up. Figure 7 shows how the jet mass distribution can
be learned by a GAN even though it was only shown examples of raw pixel intensities during
training. One can naturally extend the jet image technology to multiple causally connected
layers as is typical of a longitudinally segmented calorimeter. This extended geometry is shown
in Fig. 9. Calorimeter simulation is a bottleneck for simulation at the LHC an speeding it up
with a high-fidelity neural network simulator has the potential to save immense resources and
empower a broad set of physics analyses.

noise NN

DNN W’s
Physics W’s
DNN quarks/gluons

Boosted W ⇢ qq’, mW ~ 80 GeV / c2

Image Mass [GeV/c2]

Physics quarks/gluons

Figure 7. The jet mass distribution for signal (Lorentz boosted W bosons) and background
(generic quarks and gluons) for a physics-based-simulator as well as a GAN trained on simulation
images. Reproduced from Ref. [30].

6. Conclusions and Outlook

Modern machine learning tools have attracted widespread interest in the high energy physics
community. DNN classification, regression, and generation are powerful tools to fully exploit the
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Figure 8. The setup of a three-layer calorimeter. The energy deposition in each layer resembles
a grayscale jet image. Reproduced from Ref. [29].

physics program at the LHC and other large experiments with high-dimensional data. Some of
these algorithms have already been studied using data or full detector simulations at the LHC.
Figure 9 shows a CMS collaboration comparison of various techniques, including one developed
by CMS in another context [18, 19]. For the tasks studied so far, it appears that any modern
tool with access to the full radiation pattern has the same (excellent) performance. Taking
these techniques to data and understanding exactly what the machines are learning will add
robustness to the approaches and may even help us to learn something new about nature.
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