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Abstract. Machine learning is an important applied research area in particle physics, beginning
with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of
applications in particle and event identification and reconstruction in the 2010s. In this document
we discuss promising future research and development areas in machine learning in particle physics
with a roadmap for their implementation, software and hardware resource requirements, collaborative
initiatives with the data science community, academia and industry, and training the particle physics
community in data science. The main objective of the document is to connect and motivate these areas
of research and development with the physics drivers of the High-Luminosity Large Hadron Collider
and future neutrino experiments and identify the resource needs for their implementation. Additionally
we identify areas where collaboration with external communities will be of great benefit.
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1. Introduction

The main objectives of particle physics in the post-Higgs boson discovery era is to exploit the full
physics potential of both the Large Hadron Collider (LHC) and its upgrade, the high luminosity LHC
(HL-LHC), in addition to present and future neutrino experiments. The HL-LHC will deliver data
from 100 times the luminosity compared to the LHC, bringing quantitatively and qualitatively new
challenges due to event size, data volume, and complexity. The physics reach of the experiments will
be limited by the physics performance of algorithms and computational resources. Machine learning
(ML) applied to particle physics promises to provide improvements in both of these areas.

Incorporating machine learning in particle physics workflows will require significant research and
development over the next five years. Areas where significant improvements are needed include:

• Physics performance of reconstruction and analysis algorithms;
• Execution time of computationally expensive parts of event simulation, pattern recognition,

and calibration;
• Realtime implementation of machine learning algorithms;
• Reduction of the data footprint with data compression, placement and access.

1.1. Motivation

The experimental high-energy physics (HEP) program revolves around two main objectives: probing
the Standard Model (SM) with increasing precision and searching for new physics. Both tasks require
the identification of rare signals in immense backgrounds. Substantially increased levels of pile-up at
the HL-LHC will make this a significant challenge.

Machine learning algorithms are already the state-of-the-art in event and particle identification,
energy estimation and pile-up suppression applications in HEP. Despite their present advantage,
machine-learning algorithms still have significant room for improvement in their exploitation of the
full potential of the dataset.

1.2. Brief Overview of Machine Learning Algorithms in HEP

This section provides a brief introduction to the most important machine learning algorithms in HEP,
introducing key vocabulary (in italic).

Machine learning methods are designed to exploit large datasets in order to reduce complexity and
find new features in data. The current most frequently used machine learning algorithms in HEP are
Boosted Decision Trees (BDTs) and Neural Networks (NN).

Typically, variables relevant to the physics problem are selected and a machine learning model is
trained for classification or regression using signal and background events (or instances). Training
the model is the most human- and CPU-time consuming step, while the application, the so called
inference stage, is relatively inexpensive. BDTs and NNs are typically used to classify particles and
events. They are also used for regression, where a continuous function is learned, for example to obtain
the best estimate of a particle’s energy based on the measurements from multiple detectors.

Neural Networks have been used in HEP for some time; however, improvements in training algo-
rithms and computing power have in the last decade led to the so-called Deep Learning revolution,
which has had a significant impact on HEP. Deep Learning is particularly promising when there is a
large amount of data and features, as well as symmetries and complex non-linear dependencies be-
tween inputs and outputs.

There are different types of deep neural networks used in HEP: fully-connected (FCN), convolu-
tional (CNN) and recurrent (RNN). Additionally, neural networks are used in the context of Generative
Models, when a Neural Network is trained to mimic multidimensional distributions to generate any



number of new instances. Variational AutoEncoders (VAE) and more recent Generative Adversarial
Networks (GAN) are two examples of such generative models used in HEP.

A large set of Machine Learning algorithms are devoted to time series analysis and prediction. They
are in general not relevant for HEP where events are independent from each other. However, there is
more and more interest in these algorithms for Data Quality and Computing Infrastructure monitoring,
as well as those physics processes and event reconstruction tasks where time is an important dimension.

1.3. Structure of the Document

Applications of machine learning algorithms motivated by HEP drivers are detailed in Section 2, while
Section 3 focuses on outreach and collaboration with the machine learning community. Section 4
focuses on the machine learning software in HEP and discusses the interplay between internally and
externally developed machine learning tools. Recent progress in machine learning was made possible
in part by emergence of suitable hardware for training complex models, thus in Section 5 the resource
requirements of training and applying machine learning algorithms in HEP are discussed. Section 6
discusses ways of training the HEP community in machine learning. Finally, Section 7 presents the
roadmap for the near future.

2. Machine Learning Applications and R&D

This chapter describes the science drivers and high-energy physics challenges where machine learning
can play a significant role in advancing the current state of the art. These challenges are selected
because of their relevance and potential and also due to similarity with challenges faced outside the
field. Despite similarities, major R&D work will go in adapting and evolving such methods to match
the particular HEP requirements.

2.1. Detector Simulation

Particle discovery relies on the ability to accurately compare the observed detector response data with
expectations based on the hypotheses of the Standard Model or models of new physics. While the
processes of subatomic particle interactions with matter are known, it is intractable to compute the
detector response analytically. As a result, Monte Carlo simulation tools, such as GEANT [1], have
been developed to simulate the propagation of particles in detectors to compare with the data.

For the HL-LHC, on the order of trillions of simulated collisions are needed in order to achieve
the required statistical accuracy of the simulations to perform precision hypothesis testing. However,
such simulations are highly computationally expensive. For example, simulating the detector response
of a single LHC proton-proton collision event takes on the order of several minutes. A particularly
time consuming step is the simulation of particles incident on the dense material of a calorimeter, the
detector used to measure the energy deposited by the particles. Radiative and nuclear interactions
result in the production of a multitude of secondary particles, collectively referred to as a shower.
The high interaction probability and resulting high multiplicity of particles passing through the dense
material make the simulation of such processes very expensive. This problem is further compounded
when particle showers overlap, as is frequently the case in the core of a jet of particles produced by
high energy quarks and gluons.

Fast simulation is the process of replacing the slowest components of the simulation chain with
computationally efficient approximations. Often such approximations have been done by using sim-
plified parameterizations or particle shower look-up tables. These are computationally fast but often
suffer from insufficient accuracy for high precision physics measurements and searches.

Recent progress in high fidelity fast generative models, such as GANs and VAEs, which are able to
sample high dimensional feature distributions by learning from existing data samples, offer a promising
alternative for simulation. A simplified first attempt at using such techniques saw orders of magnitude
increase in simulation speed over existing fast simulation techniques [2], but such generative models



have not yet reached the required accuracy. Developing these techniques for realistic detector models
and understanding how to reach the required accuracy is still needed. The fast advancement in the
ML community of such techniques makes this a highly promising avenue to pursue.

Although fast simulation is a necessity, some data analyses will require the highest fidelity
simulations from GEANT. There are a large number of parameters that can be used to tune various
aspects of the simulation properties. Performing such tuning over many-dimensional parameter space
is highly non-trivial. Again, machine learning may offer a solution. Modern optimization techniques,
such as Bayesian Optimization, allow for global optimization of the simulator without the detailed
knowledge of its internal details [3]. Applying such techniques to simulation tuning may further
improve the output of the simulations.

2.2. Real Time Analysis and Triggering

The traditional approach to data analysis in particle physics assumes that the interesting events
recorded by a detector can be selected in real-time (a process known as triggering) with a reasonable
efficiency, and that once selected, these events can be affordably stored and distributed for further
selection and analysis at a later point in time. However, the enormous production cross-section and
luminosity of the LHC mean that these assumptions break down.1 In particular there are whole classes
of events, for example beauty and charm hadrons or low-mass dark matter signatures, which are so
abundant that it is not affordable to store all of the events for later analysis. In order to fully exploit
the physics reach of the LHC, it will increasingly be necessary to perform more of the data analysis
in real-time [4].

This topic is discussed in some detail in the Reconstruction and Software Triggering chapter, but it
is also an important driver of machine learning applications in HEP. Machine learning methods offer
the possibility to offset some of the cost of applying reconstruction algorithms, and may be the only
hope of performing the real-time reconstruction that enables real-time analysis in the first place. For
example, the CMS experiment uses boosted decision trees in the Level 1 trigger to approximate muon
momenta. One of the challenges is the trade-off in algorithm complexity and performance under strict
inference time constraints. In another example, called the HEP.TrkX project, deep neural networks
are trained on large resource platforms and subsequently perform fast inference in online systems.

Real-time analysis poses specific challenges to machine learning algorithm design, in particular how
to maintain insensitivity to detector performance which may vary over time. For example, the LHCb
experiment uses neural networks for fast fake-track and clone rejection and already employs a fast
boosted decision tree for a large part of the event selection in the trigger [5]. It will be important that
these approaches maintain performance for higher detector occupancy for the full range of tracks used
in physics analyses. Another related application is speeding up the reconstruction of beauty, charm,
and other lower mass hadrons, where traditional track combinatorics and vertexing techniques may
become too computationally expensive.

In addition, the increasing event complexity particularly in the HL-LHC era will mean that Machine
Learning techniques may also become more important to maintaining or improving the efficiency of
traditional triggers. Examples of where ML approaches can be useful are the triggering of electroweak
events with low-energy objects; improving jet calibration at a very early stage of reconstruction
allowing jet triggers thresholds to be lowered; or supernovae and proton decay triggering at neutrino
experiments.

2.3. Object Reconstruction, Identification, and Calibration

The physical processes of interest in high energy physics experiments occur on time scales too short
to be observed directly by particle detectors. For instance, a Higgs boson produced at the LHC will
decay within approximately 10−22 seconds and thus decays essentially at the point of production.
However, the decay products of the initial particle, which are observed in the detector, can be used
1 They may well also break down in other areas of high-energy physics in due course.



to infer its properties. Better knowledge of the properties (e.g. type, energy, direction) of the decay
products permits more accurate reconstruction of the initial physical process.

Particles are observed in a detector through the energy they deposit when traversing material, which
is subsequently digitized. Reconstruction is the process of converting the raw digital signals in the
detector into the physical properties of particles. Particle Physics detectors are usually composed of
several sub-detectors, each taking advantage of specific interaction mechanisms to detect the passage of
a specific type of particle and measure its properties. There are a variety of sub-detector technologies,
but most belong to one of three categories:
• Tracking Detectors: These detectors measure the trajectory of electrically-charged particles by

spatially locating ionization. Usually trackers are placed in a magnetic field, such that the particle
momentum can be inferred from the curvature of the trajectory. Very precise tracking detectors,
such as those that employ silicon, provide sufficient spatial resolution to enable locating the
particle creation and/or decay point. The ionization also allows for the identification of the
particle type.

• Calorimeters: These detectors measure the energy of incident particles by causing them to
interact and lose their energy in material and counting the secondary particles produced in such
interactions. Highly segmented calorimeters measure the profile of the energy deposition and can
also identify the particle type.

• Particle Identification: These detectors are aimed at determining a specific particle type using a
variety of techniques.

Algorithmic reconstruction typically involves several steps that turn the data from the detector
electronics (raw measurements) into higher level data objects, corresponding to the physical particles
that were detected (features):
• Feature Extraction: The signal from the passage of particles through a detector element, e.g. a

calorimeter cell, is observed above noise in the raw electronic output associated with the element.
This signal is then characterized.

• Pattern Recognition: The pattern of signals in geometrically adjacent detector elements is
associated with the passage of a signal or group of particles. In calorimeters, this step is commonly
referred to as clustering.

• Object Characterization: Properties of the objects are measured. In tracking detectors, this step
means fitting a pattern of “hits” to a helix. In calorimeters, this step extracts the energy, location,
and other properties of the cluster that for example characterize the shape of the cluster.

• Combined reconstruction: Objects in different detectors are associated together to create a refined
particle candidate.

Machine learning can in principle be applied at any of these steps. For example, experiments have
trained ML algorithms on the features from combined reconstruction algorithms to perform particle
identification for decades. In the past decade BDTs have been one of the most popular techniques
in this domain. More recently, experiments have been able to extract better performance with deep
neural networks.

An active area of research is the application of DNNs to the output of feature extraction in or-
der to perform particle identification and extracting particle properties. This is particularly true for
calorimeters or time projection chambers (TPCs), where the data can be represented as a 2D or 3D
image and the problems can be cast as computer vision tasks, in which neural networks are used
to reconstruct images from pixel intensities. These neural networks are adapted for particle physics
applications by optimizing network architectures for complex, 3-dimensional detector geometries and
training them on suitable signal and background samples derived from data control regions. Applica-
tions include identification and measurements of electrons and photons from electromagnetic showers,
jet properties including substructure and b-tagging, taus and missing energy. Promising deep learning
architectures for these tasks include convolutional, recurrent and adversarial neural networks. A par-
ticularly important application is to Liquid Argon TPCs (LArTPCs), which are the chosen detection
technology for the flagship neutrino program.



For tracking detectors, pattern recognition is the most computationally challenging step. In
particular, it becomes computationally intractable for the HL-LHC. The hope is that machine learning
will provide a solution that scales linearly with LHC collision density. A current effort called HEP.TrkX
investigates deep learning algorithms such as long short-term memory (LSTM) networks for track
pattern recognition on many-core processors.

2.4. End-To-End Deep Learning

The vast majority of analyses at the LHC use high-level features constructed from particle four-
momenta, even when the analyses make use of machine learning. A high-profile example of such vari-
ables are the seven, so-called MELA variables, used in the analysis of the final states H → ZZ → 4`.
While a few analyses, first at the Tevatron, and later at the LHC, have used the four-momenta di-
rectly, the latter are still high-level relative to the raw data. Approaches based on the four-momenta
are closely related to the Matrix Element Method, which is described in the next section.

Given recent spectacular advances in image recognition based on the use of raw information, we are
led to consider whether there is something to be gained by moving closer to using raw data in LHC
analyses. This so-called end-to-end deep learning approach uses low level data from a detector together
with deep learning algorithms. One obvious challenge is that low level data, for example, detector hits,
tend to be both high-dimensional and sparse. Therefore, there is interest in also exploring automatic
ways to compress raw data in a controlled way that does not necessarily rely on domain knowledge.

2.5. Sustainable Matrix Element Method

The Matrix Element (ME) Method [6–9] is a powerful technique which can be utilized for measurements
of physical model parameters and direct searches for new phenomena. It has been used extensively
by collider experiments at the Tevatron for standard model (SM) measurements and Higgs boson
searches [10–15] and at the LHC for measurements in the Higgs and top quark sectors of the SM [16–
22]. The ME method is based on ab initio calculations of the probability density function P of an event
with observed final-state particle momenta x to be due to a physics process ξ with theory parameters
α. One can compute Pξ(x|α) by means of the factorization theorem from the corresponding partonic
cross-sections of the hard-scattering process involving parton momenta y and is given by

Pξ(x|α) =
1

σfiducial
ξ (α)

∫
dΦ(yfinal) dx1 dx2

f(x1)f(x2)

2sx1x2
|Mξ(y|α)|2 δ4(yinitial − yfinal) W (x,y) (1)

where and xi and yinitial are related by yinitial,i ≡
√
s
2 (xi, 0, 0,±xi), f(xi) are the parton distribution

functions,
√
s is the collider center-of-mass energy, σ fiducial

ξ (α) is the total cross section for the process
ξ (with α) times the detector acceptance, dΦ(y) is the phase space density factor, Mξ(y|α) is the
matrix element (typically at leading-order (LO)), and W (x,y) is the probability density (aka “trans-
fer function”) that a selected event y ends up as a measured event x. One can use calculations of
Eqn. 1 in a number of ways (e.g. likelihood functions) to search for new phenomena at particle colliders.

The ME method brings in several unique and desirable features, most notably it (1) does not
require training data being an ab initio calculation of event probabilities, (2) incorporates all avail-
able kinematic information of a hypothesized process, including all correlations, and (3) has a clear
physical meaning in terms of the transition probabilities within the framework of quantum field theory.

One drawback to the ME Method is that it has traditionally relied on LO matrix elements, although
nothing limits the ME method to LO calculations. Techniques that accommodate initial-state QCD
radiation within the LO ME framework using transverse boosting and dedicated transfer functions to
integrate over the transverse momentum of initial-state partons have been developed [23]. Another
challenge is development of the transfer functions which rely on tediously hand-crafted fits to full
simulated Monte-Carlo events.



The most serious difficulty in the ME method that has limited its applicability to searches for
beyond-the-SM physics and precision measurements is that it is very computationally intensive. If
this limitation is overcome, it would enable more widespread use of ME methods for analysis of LHC
data. This could be particularly important for extending the new physics reach of the HL-LHC which
will be dominated by increases in integrated luminosity rather than center-of-mass collision energy.

Accurate evaluation of Eqn. 1 is computationally challenging for two reasons: (1) it involves high-
dimensional integration over a large number of events, signal and background hypotheses, and sys-
tematic variations and (2) it involves sharply-peaked integrands2 over a large domain in phase space.
In reference to point (1), the matrix element Mξ(y|α) in the method involves all partons in the
n → m process, so when the 4-momentum of particles are not completely measured experimentally
(e.g. neutrinos), one must integrate over the missing information which increases the dimensionality
of the integration. In reference to point (2), a clever technique to re-map the phase space in order to
reduce the sharpness of integrate in that space in an automated way (MADWEIGHT [24]) is often used
in conjunction with a matrix element calculation package (MADGRAPH_aMCNLO [25]). In practice,
evaluation of definite integrals by the ME approach invokes techniques such as importance sampling
(see VEGAS [26, 27] and FOAM [28]) or recursive stratified sampling (see MISER [29]) Monte Carlo
integration. Acceleration of some of these techniques on modern computing architectures has been
achieved, for example concurrent phase space sampling in VEGAS on GPUs.

Despite the attractive features of the ME method and promise of further optimization and paral-
lelization of the evaluation of Eqn. 1, the computational burden of the ME technique will continue to
limit is range of applicability for practical data analysis without new and innovative approaches. The
primary idea put forward in this section is to utilize modern machine learning techniques to dramat-
ically speed up the numerical evaluation of Eqn. 1 and therefore broaden the applicability of the ME
method to the benefit of HL-LHC physics.

Applying neural networks to numerical integration problems is plausible but not new (see [30–32],
for example). The technical challenge is to design a network which is sufficiently rich to encode the
complexity of the ME calculation for a given process over the phase space relevant to the signal pro-
cess. Deep Neural Networks (DNNs) are strong candidates for networks with sufficient complexity to
achieve good approximation of Eqn. 1, possibly in conjunction with smart phase-space mapping such
as described in [24]. Promising demonstration of the power of Boosted Decision Trees [33, 34] and
Generative Adversarial Networks [35] for improved Monte Carlo integration can be found in [36]. Once
a set of DNNs representing definite integrals of the form of Eqn. 1 is generated to good approximation,
evaluation of the ME method calculations via the DNNs will be very fast. These DNNs can be thought
of as preserving the essence of ME calculations in a way that allows for fast forward execution. They
can enable the ME method to be both nimble and sustainable, neither of which is true today.

The overall strategy is to do the expensive full ME calculations as infrequently as possible, ideally
once for DNN training and once more for a final pass before publication, with the DNNs utilized as
a good approximation in between. A future analysis flow using the ME method with DNNs might
look something like the following: One performs a large number of ME calculations using a traditional
numerical integration technique like VEGAS or FOAM on a large CPU resource, ideally exploiting ac-
celeration on many-core devices. The DNN training data is generated from the phase space sampling
in performing the full integration in this initial pass, and DNNs are trained either in situ or a pos-
teriori. The accuracy of the DDN-based ME calculation can be assessed through this procedure. As
the analysis develops and progresses through selection and/or sample changes, systematic treatment,
etc., the DNN-based ME calculations are used in place of the time-consuming, full ME calculations to
make the analysis nimble and to preserve the ME calculations. Before a result using the ME method
is published, a final pass using full ME calculation would likely be performed both to maximize the
numerical precision or sensitivity of the results and to validate the analysis evolution via the DNN-
based approximations.

2 a consequence of imposing energy/momentum conservation in the processes



There are several activities which are proposed to further develop the idea of a Sustainable Matrix
Element Method. The first is to establish a cross-experiment group interested in developing the ideas
presented in this section, along with a common software project for ME calculations in the spirit
of [37]. This area is very well-suited for impactful collaboration with computer scientists and those
working in machine learning. Using a few test cases (e.g. tt̄ or tt̄h production), evaluation of DDN
choices and configurations, developing methods for DNN training from full ME calculations and direct
comparisons of the integration accuracy between Monte Carlo and DNN-based calculations should be
undertaken. More effort should also be placed in developing compelling applications of the ME method
for HL-LHC physics. In the longer term, the possibility of Sustainable-Matrix-Element-Method-as-a-
Service (SMEMaaS), where shared software and infrastructure could be used through a common API,
is proposed.

2.6. Matrix Element Machine Learning Method

The matrix element method is based in the fact that the physics of particle collisions is encoded in the
distribution of the particles’ four-momenta and with their flavors. As noted in the previous section,
the fundamental task is to approximate the left-hand side of Eq. (1) for all (exclusive) final states of
interest. In the matrix element method, one proceeds by approximating the right-hand side of Eq. (1).
But, since the goal is to compute Pξ(x|α), and given that billions of fully simulated events will be
available, and that the simulations use exactly the same inputs as in the matrix element method,
namely, the matrix elements, parton distribution functions, and transfer (or response) functions, one
can ask whether a more direct machine learning approach can be developed to approximate Pξ(x|α)
without the need to execute the calculation of the right-hand side of Eq. (1) explicitly. We believe
the answer is yes, provided that a key advantage of the matrix element method can be replicated,
namely, the fact that the method provides a function that depends explicitly on the model parameters
α. Simulated events are typically simulated at fixed values of the model parameters. In order to
replicate the advantage of the matrix element method, it would seem necessary to simulate events
over an ensemble of model parameter points. But, that is a huge computational burden. The question
is: is there a way to sidestep? Perhaps.

The matrix element method is technically feasible because there are now many codes that provide
access to the square of the matrix elements as a function of α. Consequently, it would be possible to
build a parameterized set of simulated events by reweighting each simulated event using the weighting
function

w(α,α0) =
|Mξ(y|α)|2

|Mξ(y|α0)|2
, (2)

where α0 denotes the values of parameters at which the events were simulated. In practice, in order
to keep the dynamic range of the weights within reasonable bounds, one presumably would simulate
sets of events at a few reasonable choices of the parameters and use the weights to interpolate between
these fixed parameter points.

What could one do with these parameterized simulated events? One could take advantage of
the mathematical fact (shown more than quarter century ago) that, given a sufficiently expressive
parameterized function f(x, ω), with parameters ω, fitted by minimizing either the quadratic loss or
cross entropy using data comprising two classes of objects of equal size, for example, signals with
density s(x) assigned a target of unity and backgrounds with density b(x) assigned a target of zero,
then asymptotically — that is, for arbitrarily large training samples,

f(x, ω) =
s(x)

s(x) + b(x)
. (3)

This result was derived in the context of neural networks. However, it is in fact entirely independent
of the nature of the function f(x, ω).

We can exploit this result to approximate Pξ(x|α) directly using, for example, DNNs. For each
simulated event, in the training set, one could sample α from a known distribution q(α), thereby



yielding an ensemble of triplets {(x,α, w(α,α0))}. Call this ensemble the “signal”. Sample x from
another known distribution p(x) and for each x sample α from q(α). Call the ensemble of pairs
{(x,α)} the “background”. From Eq. (3), we have

f(x, ω) =
s(x,α)

s(x,α) + p(x)q(α)
, (4)

from which we find

Pξ(x|α) =
s(x,α)

q(α)
= p(x)

(
f

1− f

)
. (5)

If this could be made to work, it would be a direct machine learning alternative to the matrix element
method, which incorporates the advantages of the former with the added advantage that the transfer
function is automatically incorporated without the need to model it explicitly and the calculation of
Pξ(x|α) would be fast because it would be given directly in terms of the DNN, f(x, ω).

2.7. Learning the Standard Model

New physics may manifest itself as unusual or rare events. One approach is to accurately identify
the Standard Model processes and search for anomalies. Classifying the Standard Model events is a
challenging task, as it consists of many complicated physics processes. Multi-class machine learning
algorithms are well-suited for this classification problem. Once an event is classified as likely to be
from a known physics process, it can be filtered out, and remaining events can be further analyzed
for hints of new physics. Additionally, unsupervised machine learning techniques can be applied to
remaining events to cluster them together. This approach would also be useful in identifying detector
problems.

2.8. Theory Applications

The theoretical physics community has a number of challenges where machine learning can make an
impact. These include areas of theoretical model optimization with hundreds of parameters, searches
for new models, understanding and estimation of the parton distribution functions and possibly quan-
tum machine learning. The following details one such application: learning of the parton distribution
functions with machine learning.

Making progress towards the objectives of the HL-LHC program (see Section 1) requires not only
obtaining experimental measurements of the physical processes but also reliable theory inputs to com-
pare to. This becomes increasingly challenging as the experimental data gets more precise. There are
numerous examples of phenomenologically relevant processes where the experimental uncertainty is
comparable to the estimate of the theoretical uncertainty of the corresponding calculation.

Furthermore, the theory does not predict the value of all the inputs required for the computations
(for example the value of the strong coupling constant αS evaluated at the Z mass), and there are
situations where the equations resulting from theory cannot be solved to describe the physics ade-
quately, and the corresponding theory inputs must be obtained from data instead. A more complex
example is the determination of Parton Distribution Functions (PDFs): Quantum Chromodynamics
(QCD) describes the proton collisions at high energy in terms of partons (e.g. quarks and gluons),
but it is not possible to calculate directly from QCD the momentum carried by each quark or gluon
within a proton since QCD is not solvable in its confined regime. Our lack of theoretical knowledge
about the characterization of partons within a proton is embedded into a suitable definition of the
Parton Distribution Functions (approximately the momentum densities of each of the partons). The
PDFs then need to be determined from experimental data. The NNPDF collaboration uses Machine
Learning techniques to obtain a PDF determination that is accurate enough to be suitable for high-
precision collider data comparison. The NNPDF fitting procedure is described in full details in [38].

The idea is to combine data from all relevant physical processes and fit a neural network represent-
ing each PDF. The difficulty of the procedure steams from the fact that multiple experimental inputs



need to be combined to obtain a PDF fit. Each of these inputs adjoins only indirect constraints on
the PDFs, leaving some regions of the PDF completely unconstrained by data. NNPDF fit includes
around 50 datasets from different physical processes, and results that are not always consistent among
themselves. Therefore it is crucial to propagate the uncertainty of the experimental inputs into un-
certainty on the PDFs.

While the dataset is small, each experimental point has an indirect relation to the PDFs, as it is
the result of the convolution of one or two PDFs with the corresponding partonic cross section. Code
has been developed to compute these convolutions APFELgrid [39]. Future research directions include
the possibility of using standard ML frameworks to efficiently express the PDF fitting problem. The
uncertainties of the theory calculations need to be taken into account as well in the fits. A fully sys-
tematic treatment of theory errors in PDFs is a topic of research where Machine Learning could play
an important role. The dominant uncertainties in the data are no longer statistical and instead arise
from correlated systematics. Determining those systematics accurately is non trivial on the side of the
experimental analyses and can have a major impact on the resulting PDFs. The problem grows more
complex when ML techniques for which there is no simple recipe to estimate the uncertainty are used
extensively in the experimental analysis. Taking full advantage of these advanced methods requires
interdisciplinary research and communication on topics such as developing regularization schemes for
experimental covariance matrices.

In conclusion, it is not only important to obtain the best fit PDF, but also a reliable estimation of
the uncertainty, which in turn requires controlling the uncertainty of the experimental and theoretical
inputs.

2.9. Uncertainty Assignment

Until fairly recently, little attention has been paid to the problem of assigning a measure of uncertainty
to the output of machine learning algorithms. However, there is a growing recognition that the lack of
such measures is a serious deficiency that needs to be addressed. This is particularly problematic in
particle physics where accurate uncertainty assignments are crucial for assessing the quality of quanti-
tative results. Uncertainty assignment is especially urgent if machine learning methods are to be used
for regression.

Standard methods exist in the statistics literature to quantify the uncertainty when an explicit
likelihood function is available. Unfortunately, however, the overlap between the machine learning and
statistics communities has been minimal at best. The problem of uncertainty offers many opportunities
for fruitful collaborations between physicists, statisticians, computer scientists, and machine learning
practitioners, and is something that ought to be vigorously encouraged. One area ripe for collaboration
is in the use of Bayesian methods to quantify uncertainty using, for example, Hamiltonian Monte Carlo
(HMC) sampling of posterior densities. One serious issue is that HMC is computationally prohibitive
for DNNs. Therefore, new and more effective ways to perform large scale Bayesian calculations that
go beyond HMC need to be developed, and it would be particularly useful to develop methods that
can take advantage of multicore machines as discussed in Section 5.

2.10. Monitoring of Detectors, Hardware Anomalies and Preemptive Maintenance

Data-taking of current complex HEP detectors is continuously monitored by physicists taking shifts
to check the quality of the incoming data. Typically, hundreds of histograms have been defined by
experts and shifters are alerted when an unexpected deviation with respect to a reference occurs. It is
a common occurrence for a new type of problem to remain unseen for a non-negligible period of time
because such a situation had not been foreseen by the expert.

A whole class of ML algorithms called anomaly detection can be useful in such situations. They are
able to learn from data and produce an alert when a deviation is seen. By monitoring many variables
at the same, time such algorithms are sensitive to subtle signs forewarning of imminent failure, so that
preemptive maintenance can be scheduled. Such techniques are already used in industry applications.



One challenge is that normal drifts in environmental conditions can induce drifts in the data.
Beyond just reporting a problem, the natural next step is to connect an anomaly detection algorithm
to the appropriate action: restart an online computer, contact an on-call expert, or similar. In the
long term, the hardware and data structures of future detectors should be designed to facilitate the
operation of anomaly detection algorithms.

2.11. Computing Resource Optimization and Control of Networks and Production Workflows

Data operations is one of the significant challenges for the upcoming HL-LHC. In the current infras-
tructure, LHC experiments rely on in-house solutions for managing the data. While these approaches
work reasonably well today, machine learning can help automate and improve the overall system
throughput and reduce operational costs.

Machine Learning can be applied in many areas of computing infrastructure, workflow and data
management. For example, dataset placement optimization and reduction of transfer latency can lead
to a better usage of site resources and an increased throughput of analysis jobs. One of the current
examples is predicting the “popularity” of a dataset from dataset usage, which helps reduce disk re-
source utilization and improve physics analysis time turn-over.

Data volume in data transfers is one of the challenges facing the current computing systems as
thousand of users need to access thousands of datasets across the Grid. There is an enormous amount
of metadata collected by application components, such as information about failures, file accesses,
etc. Resource utilization optimization based on this data, including Grid components and software
stack layers, can improve overall operations. Understanding the data transfer latencies and network
congestion may improve operational costs of hardware resources.

Networks are going to play a crucial role in data exchange and data delivery to scientific applications
in HL-LHC era. The network-aware application layer and configurations may significantly affect
experiment’s daily operations. ML can be applied to network security in order to identify anomalies
in network traffic; predict network congestion; detect bugs via analysis of self-learning networks, and
optimize WAN paths based on user access patterns.

3. Collaborating with other communities

3.1. Introduction

Discovery science provides a challenge that attracts brilliant minds eager to push the boundaries of
scientific understanding of nature. Particle physics has a rich problem domain that offers avenues for
intellectual reward. The goal is to achieve a vibrant collaboration between the data science and high-
energy physics communities by finding a common language and working together to further science.
Both communities can benefit from such collaboration. The HEP community can explore new research
directions and applications of machine learning, novel algorithms, and direct collaboration on HEP
challenges. The ML community can benefit from a diverse set particle physics problems with unique
challenges in scale and complexity, and a large community of researchers that can expand the machine
learning horizon by contributing to solving problems relevant to both communities. For example, the
treatment of systematic uncertainties is an important topic for the HEP and ML communities. By
working together on common challenges, the two fields can further progress in solving such problems.

There are a number of existing examples of collaboration between HEP and ML that have produced
fruitful results through mostly local connections (e.g. [2, 40]). The HEP community should continue
such collaborations and look for additional collaborations with the ML community.

Domain knowledge can present a barrier to collaboration. The HEP community needs to define
its challenges in a language that the ML community can understand. This may involve stripping the
domain knowledge entirely, or retaining necessary information with clear and concise explanations as



to its relevance. Machine learning likewise has a significant amount of domain knowledge. Ideas and
solutions provided by both communities should be presented in an understandable way for scientists
without in-depth knowledge.

3.2. Academic Outreach and Engagement

Direct collaboration between HEP researchers and computer scientists working in the area of machine
learning is an important possible driver of innovation in the area of machine learning applications
described in Section 2. It is important for high-energy physics to engage and collaborate with the aca-
demic community focused on new machine learning algorithms and applications as they will naturally
be interested in applying new ideas to interesting and complex data provided by HEP.

Conferences and workshops are a core aspect of the academic ML community, and organizing or
contributing to key conferences is a means of gaining interest. Organizing sessions or mini-workshops
within major ML conferences, such as NIPS, would increase the familiarity of HEP within the ML
community and jump-start future collaborations. This has been explored in single cases [41] but is not
an established, regular workshop series. At the same time inviting ML experts to HEP workshops, as
done at [42] and the DS@HEP series [43–45], can foster greater long-term collaboration. There should
be coordinated efforts to:
• Organize workshops and conferences open to external collaborators to discuss applications,

algorithms and tools
• Organize thematic workshops around topics relevant to HEP
HEP should reach out to other scientific communities with similar challenges, for example

astrophysics/cosmology, medium energy nuclear physics and computational biology. This can lead
to more active partnerships to better collaborate on ideas, techniques, and algorithms.

3.3. Machine Learning Challenges

To engage the wider ML community, challenges such as the Higgs Boson Challenge (2014) or the
Flavor Physics Challenge [41, 42] have been organized on Kaggle. These types of challenges draw con-
siderable attention from the Machine Learning community and additional similar challenges should
be organized in the future.

Organization of a challenge requires a well documented dataset, a starting-kit and an evaluation
metric to rank the solutions. This forces the organizers to simplify the problem as much as possible,
while retaining its intrinsic complexity. The drawback of challenges is that once they are launched,
participants priority is winning the challenge and not eventual collaboration with HEP. It is important
to foresee upfront a way to integrate incoming solutions, for example via forums and post-challenge
workshops (like [42]) where a diversity of competitive algorithms can be presented. The challenge
dataset and evaluation metric should be released publicly so that further developments can continue.

3.4. Collaborative Benchmark Datasets

There is a strong incentive for HEP to develop public benchmark datasets, beyond just challenges.
Access to a dataset makes the discussion much more concrete and productive. Within the HEP com-
munity, common datasets enable comparisons of algorithms with much better accuracy, which is very
useful for research and development. The same benchmark datasets can also be used for teaching,
tutorials and training.

These benchmark datasets could be built based on public simulation engines or released by experi-
ments within the bounds of their data access policy. Even a small subset of an experiment’s simulated
data can be the base of a very valuable benchmark dataset. For example, the CMS experiment has
released a significant amount of its simulated and collected data via the CERN Open Data Portal [46].

To be maximally useful, the subsequent guidelines should be followed when designing a benchmark
dataset:



• Simplify the dataset as much as possible
• Document the dataset to make it understandable by a non-HEP expert
• Create methodologies and metrics for the evaluation of proposed solutions, and document them
• Prepare an integration plan for incoming ideas and solutions
• Feedback results of successful applications
The HEP community should organize and curate a variety of such benchmark datasets covering its

current physics drivers and make them publicly available. To improve the reproducibility of results and
algorithm comparisons, some of the data used for evaluation of the solutions should be kept private.
Additionally, after investing heavily into producing highly-detailed and realistic simulations, the HEP
community can provide the machine learning community with labeled datasets with high statistical
power to test algorithms and develop novel ideas.

3.5. Industry Engagement

Industry has been focused on the development and adoption of machine learning techniques. In addi-
tion to algorithm and software development, one of the promising areas is the adoption of dedicated
specialized hardware and high performance co-processors. GPUs, FPGAs, and high core count co-
processors all have the potential to dramatically increase performance of machine learning applications
relevant to the HEP community. One of the challenges is gaining the human expertise for develop-
ment and implementation. Industry interactions bring specific technology opportunities and access to
specialized expertise that can be difficult to hire and support internally.

There are specific areas of development where industry has expressed interest in collaborating with
HEP. Automated resource provisioning, data placement, and scheduling are similar to industrial appli-
cations to improve efficiency. Applications such as data quality monitoring, detector health monitoring
and preventative maintenance can be automated using techniques developed for other industrial qual-
ity control applications. There are two more forward looking areas that coincide with HEP physics
drivers, namely computer vision techniques for object identification and real-time event classification.
These present a challenge to industry due to its complexity and benefit outside of HEP.

CERN OpenLab is a public-private partnership that accelerates the development of cutting-edge
solutions for the LHC community and wider scientific research. CERN OpenLab has established the
infrastructure to maintain non-disclosure agreements, to arrange ownership of intellectual property,
and to provide an interface between CERN and industry. As part of its upcoming phases, OpenLab
plans to explore machine learning applications for the benefit of LHC experiments computing and the
HL-LHC. Such initiatives and industry partnerships should be supported in the future.

3.6. Machine Learning Community-at-large Outreach

Another form of engagement is using the communications mediums to broadcast our challenges and
attract interested collaborators. There are a variety of channels which can be leveraged to increase
the visibility of our problems and research opportunities in the ML community. These can be pop-
ular forums such as reddit, personal or official blogs, social media, or direct contact with influential
personalities.

Podcasts have shown to be a great vehicle for reaching a large audience. Listeners are keen to
consume material that is outside of their immediate problem domain in a way that is easy to digest.
There is an abundance of machine learning podcasts with a large base of listeners that can be targeted
for outreach:
• Linear Digressions (co-hosted by former ATLAS Ph.D. Katie Malone)
• Partially Derivative
• Talking Machines
• Data Skeptic
• Becoming a Data Scientist Podcast

http://lineardigressions.com/
http://partiallyderivative.com/
http://www.thetalkingmachines.com/
https://dataskeptic.com/
http://becomingadatascientist.com/


• Not So Standard Deviations
• This Week in ML & AI

Another form of engagement is through outreach-style blog posts to explain HEP challenges in a
way that is easy to understand by the public.

Another outreach opportunity is to make HEP related presentations at Machine Learning Meetups
across the world to generate awareness, engage community, foster cross pollination of ideas between
HEP and industry. Some popular ML meetups are:

• NYC: https://www.meetup.com/NYC-Machine-Learning/
• Berlin: https://www.meetup.com/Advanced-Machine-Learning-Study-Group/
• SF: https://www.meetup.com/SF-Bayarea-Machine-Learning/

In conclusion, existing outreach efforts should be expanded to attract greater collaboration between
the HEP and ML communities. By understanding and speaking the same language, the two
communities can better collaborate and find solutions to present and future challenges.

4. Machine Learning Software and Tools

Machine learning does not exist without software. There are a large variety of algorithms written
in different programming languages and general software frameworks that combine many classes of
methods into one package. The following sections focus on specific topics and challenges related to
machine learning software design in HEP.

4.1. Software Methodology

Presently, there are two machine learning software methodologies in high-energy physics. The first
approach focuses on HEP-developed ML toolkits, such as the Toolkit for Multivariate Analysis
(TMVA) in ROOT, while the second approach relies on externally developed software, of which
there are many examples. Historically, a variety of approaches and competition among them has
led to important breakthroughs in the field. On the other hand, having too many choices increases
repetition and leads community segmentation and possible issues with reproducibility.

4.2. I/O and Programming Languages

The sheer amount of data accumulated by HEP experiments requires a close look at data access opti-
mization. To train and apply ML techniques on these data, efficient I/O becomes critical, especially
for training. I/O performance is very dependent on data formats. Moreover, support for reading data
in different formats is required for certain use-cases.

Exploration of new file systems and methods to improve I/O limitations are important and the
following R&D studies should take place:

• Explore new file systems to assess I/O limitations;
• Use alternative industry approaches such as Google BigQuery to explore various data access

patterns;
• Explore parallel data processing platforms such as Apache Spark for ML training.

Although particle physics has been reliant on C++ over the past decade, the machine learning
community has explored other programming languages, in particular the python-based ecosystem.

4.3. Software Interfaces to Acceleration Hardware

Modern machine learning software significantly benefits from the use of hardware accelerators such as
GPUs. At the same time, ML users should not be forced to write platform-dependent code. Various
interfaces to different hardware architectures are needed in order to make efficient use of the available

https://itunes.apple.com/us/podcast/not-so-standard-deviations/id1040614570?mt=2
https://twimlai.com/
https://www.meetup.com/NYC-Machine-Learning/
https://www.meetup.com/Advanced-Machine-Learning-Study-Group/
https://www.meetup.com/SF-Bayarea-Machine-Learning/


computing resources. The emergence of the Open Computing Language (OpenCL) allows program-
ming of high-level interfaces that can run on various hardware platforms.

Machine learning tools often provide different sets of APIs to develop and train the models in one
language, and various bindings to use trained models in other programming languages. This is a
convenient model for many HEP applications, such as the trigger system, where application latency
puts stringent requirements on the software and hardware used.

4.4. Parallelization and Interactivity

Training ML algorithms takes a significant amount of time and parallelization at various levels is
desired, such as the parallelization of the computations within a single model. Another type of par-
allelism is data parallelism that targets the processing phase of the training with data partitioning
and model training using distributed workers. Frameworks like Apache Spark and ideas such as batch
training offer promise in this area.

Often one needs to produce many different machine learning models, for example while tuning
hyper-parameters or performing k-fold cross-validation, and distribution of these algorithms is key to
the reduction of the overall training time. ML algorithm inference significantly benefits from paral-
lelization as well. For example, in particle physics trigger systems, the stringent latency requirements
impose constraints on the type of algorithms that can be easily parallelized in the hardware.

The availability of interactive frameworks, for example Jupyter notebooks, allows for rapid
prototype development and testing of ML tools. Such frameworks also ease the connection between the
description of models and the data, providing straightforward means of visualizing models and data.
HEP has started to exploring interactive frameworks, such as the Service for Web Based Analysis
(SWAN). One of the challenges is availability of adequate hardware resources for these systems.

4.5. Internal and External ML tools

Internally developed ML software, such as the Toolkit for Multivariate Analysis (TMVA, [47]), has
been developed to apply a variety of machine learning algorithms to HEP challenges. Currently, most
published HEP analyses with machine learning have made use of TMVA. There is also software de-
veloped in HEP, such as NeuroBayes [48, 49] and RuleFit, that have gained popularity outside of HEP.

At the same time, the ML landscape has evolved and many different ML tools have emerged and
gained popularity. There are a growing number of published results based on externally developed
tools. The latter, often developed directly by industry for specific applications, are constantly under-
going development, incorporating the latest algorithms from academia. Currently, both internal and
external tools are used by the HEP community. TMVA has also undergone significant development in
recent years. In addition, there are smaller tools developed in the HEP community, extending either
internal or external ML tools for specific use cases and applications within HEP experiments, such as
hep_ml [50] or tmva-branch-adder [51].

This begs the question: what aspects of ML development and use should the HEP community focus
on in the next 5-10 years? There are several aspects to consider including data formats, community
size, and interfaces.

4.5.1. Machine Learning Data Formats HEP and ML communities currently make use of different
data formats. HEP heavily relies on the ROOT software framework for data storage, data processing,
and data analysis. The machine learning community uses a large variety of formats, as shown in
Figure 1. This figure also shows the relationship of machine learning data formats with ROOT: the
ROOT file format is very flexible, though it requires a significant investment to properly use. Table 1
summarizes the current machine learning toolkits and file formats they support.
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Figure 1. Existing data-formats used by ML communities.

Table 1. This table lists various data formats (rows) and ML tools (columns). The X indicates that
there is a native solution, while × means that the conversion from one data-format to another is
straightforward. The following notation has been used to denote the data-formats: T Trees, F flat
tables, M sparse matrices, R row-wise arrays, C column-wise arrays S static data structures

TMVA TensorFlow Theano Scikit R Spark VW libFM RGF Torch
Learn ML

ROOT [T, C] X
CSV [F] X X X X X × × × X
libSVM [M] × X ×
VW [M] X
RGF [M] X
NumPy [R] X X X X X × × × X
Avro [S, R] X X
Parquet [S, C] X X
HDF5 [S] × × × X
R df [R] X

4.5.2. Desirable HEP-ML Software and Data Format Attributes A desirable data format should have
the following attributes: high read-write speed for efficient training, sparse readability without loading
the entire dataset into RAM, compression, and common use by the machine learning community.

HEP machine learning applications require highly performant and flexible algorithms to address
the variety of use cases. Some applications, such as triggering, also have to work under tight latency
constraints of the order of a few microseconds and below. The data sets are extremely large, which
comes with I/O challenges as described in Section 4.2. This is expected to become even more chal-
lenging, as the LHC continues to ramp-up and deliver increasingly large amounts of data.

As discussed in Section 4.3, Machine Learning tools use a number of languages. To use these tools
it will therefore be important to offer adequate support. C++ converters or similar tools are also
needed to make sure the training result can be efficiently evaluated.

Advantages of using the external tools are the size of the community that uses and supports
them, being able to easily keep up with progress in the industry and profit from the forefront of the
ML research. It should also be noted that some of the recent industrial efforts to develop and maintain
ML-tools rely on resources far beyond that of basic research. The deep learning tools of the previous
and current generations constitute a demonstration of corresponding quality.



Disadvantages of using external tools are that there are too many choices, they are not guaranteed
to be supported over the lifetime of particle physics experiments, and it can be difficult to adapt them
to HEP specific requirements which may not be among the priorities of the ML community.

Advantages of using internal tools are that decisions about long-term support remain in the
community, and the tools can be adapted to the specific needs of HEP. Disadvantages include the
challenges in incorporating new algorithms and ideas on a timely basis and a possible lack of resources
for long-term maintenance.

4.5.3. Interfaces and Middleware One approach to bridge the gap between internal and external
tools is by building interfaces. Some researchers prefer to convert their data to the file formats used
by external tools and to work exclusively with external tools. This has the advantage of working as
close as possible with the ML community’s tools and its documentation, and is as close to what is
used by ML researchers as possible. At the same time, interfaces have been built between TMVA
and external machine learning tools, allowing for their use and direct comparison between their per-
formance. Currently, interfaces to R, scikit-learn, keras and tensorflow have been developed. Those
have the advantage of providing a homogeneous interface and require little training overhead for those
already knowledgable in using TMVA.

A more general approach to file format conversion is to build middleware solutions that export
HEP-specific formats like ROOT to formats used by external machine learning tools. Existing mid-
dleware solutions are shown in Table 2.

Approaches to bridge the different languages and data formats inside and outside of HEP include
providing interfaces or building middleware solutions that translate HEP-specific data formats to
external ML tools. It is a topic of current research to determine the most efficient solution.

Table 2. Middleware solutions translating the ROOT data format to other formats.

PyROOT Python module that allows the user to interact with ROOT. [52]
root_numpy Interface between ROOT and NumPy. [53]
root_pandas Interface between ROOT and Pandas dataframes. [54]
uproot A high throughput I/O interface between ROOT and NumPy. [55]
c2numpy Pure C-based code to convert ROOT data into Numpy arrays

which can be used in C/C++ frameworks. [56]
root4j The hep.io.root package contains a simple Java interface for reading ROOT files.

This tool has been developed based on freehep-rootio. [57]
root2npy The go-hep package contains a reading ROOT files.

This tool has been developed based on freehep-rootio. [57]
root2hdf5 Converts ROOT files containing TTrees into HDF5 files. [58]

5. Computing and Hardware Resources

A typical high-energy physics data model consists of a hierarchy of increasingly refined data stores.
Each store provides a refined view of a list of “events”, the self contained records that capture the
state of the detector at the time when a particle interaction occurs. At the bottom of the hierarchy is
the raw data, a byte-stream of the readout from detector electronics. At the top of the hierarchy are
the “high-level” physics objects, such as electrons or jets, providing descriptive information about the
quality and topology of physics events. The data stores are typically processed by independent copies
of identical code processed in batch computing queues. The result of this processing is filtered data



and extracted physics parameters.

At present, training of machine learning algorithms is done using dedicated or private resources.
These vary in configuration and processing power, depending on the size of the data and complexity of
the algorithm. For a given event, the evaluation of algorithms is performed on a single core producing
a single discriminator or regressor output. In order to progress to evaluation of complex machine
learning algorithms, more computing power is needed in both the training and evaluation stages, as
larger amounts of data are needed to feed models with tens or hundreds of thousands of parameters.
This implies the expansion of the current computing model to include architectures that are well suited
to machine learning tasks, such as many integrated core (MIC), graphical processing units (GPUs)
and tensor processing units (TPUs). This is a fundamental departure from the single-core or few-core
jobs. These architectures provide a significant computational speed improvement for both training
and evaluation of ML algorithms, but require dedicated hardware, drivers, and software configuration.

Similarly, the locality and bandwidth of large data stores will need to be optimized in order to avoid
bottlenecks in training and evaluation for analysis. Data placement and the need to use dedicated
hardware indicate that a transition to HPC, or HPC-like, architectures may be needed to achieve the
desired performance. Due to significant synergy with the direction of industry in this respect, use
of commercially available resources should be considered for future high-energy physics computing
models.

In the following subsections we will discuss the resource needs for the physics drivers mentioned
earlier: fast simulation, real-time analysis, object and event reconstruction and particle identification.
The limitations of the current computing model are discussed as well as how those physics driver needs
can be met in the future.

5.1. Resource Requirements

The popularity of deep learning methods is to a large extent due to the possibility of training these
models in a reasonable amount of time with large scale parallelism. In particular, the training stage
requires repeated simultaneous access to many data elements and specialized hardware has been de-
veloped for training deep learning models.

In contrast, inference can be an operation applied to a single data element at a time and needs
to be performed only once. Inference has less demands on I/O and is limited only by the computing
power and model complexity. Because inference has real-time applications in high-energy physics,
latency and throughput constraints are the main challenges.

A typical HEP application can require up to 1 GPU-week to train a single model. To obtain
the best results and understand the performance of the model, an average of 100 hyper-parameter
points optimization is typically performed. A single project could therefore easily require up to a full
GPU-year for training. The speed up of the training process can be obtained by means of faster and
more capable hardware, parallelization of single training and by splitting training over multiple nodes.
Resources, such as GPUs, TPUs and MIC need to be evaluated in the context of realistic benchmark
particle physics applications.

If different ML techniques can achieve equivalent physics performance but require different
processing power, it is important to quantify what is driving the performance gains and what level of
performance-processing power trade-off is maintainable to achieve the required physics goals.

5.2. Graphical Processing Units

GPUs have been extremely useful in speeding up the training of complex deep learning models. Many
researchers in HEP are currently relying on private or university GPU clusters to perform machine
learning training. Unfortunately, there is no centralized GPU resource available for general HEP



usage. Availability of greater and more modern GPU resources would significantly reduce the training
time and assist many on-going R&D efforts in the community.

5.3. High Performance Computing

Resource-rich many-core processors such as MIC, GPUs, and TPUs are vital to the optimization of the
training time of most modern machine learning algorithms, including deep neural networks, generative
adversarial networks, autoencoders, etc. Availability of High Performance Computing (HPC) resources
equipped with many-core processors and high-performance network storage are essential to distributed
running of large-scale machine learning algorithms. Current efforts to bring and expand the availability
of HPC resources in high-energy physics computing will be vital to the successful progress of the
application of machine learning techniques to current and future experiments.

5.4. Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) provide an efficient and low-latency application of machine
learning algorithms directly at the level of hardware, as desirable for HEP trigger systems. The
following ML algorithms are more suitable for FPGAs due to their simpler parallelization: boosted
decision trees, random forests and decision rule ensembles. For example the CMS experiment currently
uses boosted decision trees in FPGAs in the trigger system to estimate muon momenta. Further
research and development is needed in this area to apply more advanced machine learning techniques
like deep learning directly in the hardware. One of the challenges is the limited availability of floating
point operations gates and the precision needed to maintain the best performance. The possibility of
coupling the FPGAs with a CPU with significant random-access memory (RAM) allows the shift of
some of these operations to RAM.

5.5. Opportunistic Resources

The current HEP computing model is based on a tiered structure where computing resources are
mostly large data centers providing CPU resources for collaboration. Although existing resources are
gradually moving towards supporting GPUs, it is unlikely to reach all HEP computing centers in the
near future. Therefore opportunistic resources are a possible option for training machine learning
applications.

Currently, cloud solutions provided by the industry run ML workflows on dedicated hardware and
offer interfaces for training machine learning models. The scientific community should work closely
with cloud providers to harmonize our analysis computing needs and data access patterns with their
business models. Costs of the cloud resources should be compared with the costs of procuring these
resources independently.

In order to make the best use of resources available to the community, all resources should ideally
be made available through a unique work queue. That implies some uniformization of the software
stack, and several specific requirements in the resource management system, especially in terms of
data movement.

5.6. Data Storage and Availability

Data storage limitations will have a major impact on machine learning applications. Presently, to
train machine learning algorithms, it has been possible to take advantage of increases in statistics
of Monte-Carlo simulated events needed for other use cases. Further machine learning progress may
require more simulated data than what is available today. How to produce and store these additional
large amounts of data is a challenge that needs to be overcome.

Availability of data at PByte/EByte scale represents another challenge for the ML community.
A good solution must provide access to a large data volume for hundred or thousand of users
simultaneously. Additionally, data movement might need to be automatized to make the training
data available transparently at high speed local storage with use of an automatic caching mechanism.



The success of Apache Spark and Google BigQuery platforms may serve as a model. In addition to the
regular HEP workflows, data streaming, transformation and readout in mini-batches may be required
to train models over large data sets.

5.7. Software Distribution and Deployment

To efficiently use the resources described in previous subsections, machine learning software needs to
be available on the computing resources. Platforms, such as the CERNVM File System (cvmfs), are
very useful for distributing software instead of requiring local installation. Additional tools like docker
containers for application shipping can be useful in providing homogeneous software environments
across the different systems. Another challenge is that the software layer needs to be agnostic to the
hardware back-end.

5.8. Machine Learning As a Service

Current cloud providers rely on the machine learning as a service model, allowing for the efficient use of
common resources, and make use of interactive machine learning tools. Machine Learning As a Service
is not yet widely used in HEP, but examples of successful publications which used Machine Learning
As a Service exist, e.g. [59]. Specialized HEP services for interactive analysis, such as CERN’s Service
for Web-based Analysis (SWAN) may play an important role in adoption of machine learning tools
in HEP workflows. In order to use these tools more efficiently, sufficient and appropriately tailored
hardware resources described in this chapter are needed.

6. Training the community

In order to address the communication barrier and to speak the same language, the HEP community
should be trained in ML concepts and terminology as part of a standard curriculum. The training
should focus on well-maintained and well-documented software packages. It should provide lectures
on general ML concepts and hands-on tutorials on specific tools based on concrete examples.

Being able to apply machine learning to practical HEP problems requires the understanding of
basic ML concepts and algorithms. For this, regular data science lecture series and seminars, like [60],
are very useful. At the university level, courses dedicated to machine learning applications in physics
research are an excellent way to train undergraduate and graduate students. For example, the “Deep
Learning in Physics Research” course with 60 participants consisting of 12 lectures and exercises which
are performed on 20 GPUs of the VISPA internet platform [61].

Experiments currently have training activities for newcomers that focus on analysis software and
introduction to domain knowledge [62]. Machine learning should next be incorporated into the
incoming collaborators training efforts of the experiments. As discussed in the Community White
Paper report on Careers and Training [63], ensuring the development and availability of resources for
knowledge transfer is likewise essential to ML.

7. Roadmap

7.1. Introduction

In this chapter we discuss the roadmap towards implementation of the research and development areas
described in Section 2.

7.2. Timeline

The incorporation of machine learning into particle physics experiments must respect two primary
time lines: the schedules of HL-LHC and funding agencies, and the experiments’ need for extensive
validation of the algorithms.



The current LHC schedule has Run 3 starting in 2021 and the HL-LHC starting in 2026. As software
processes and algorithms are re-imagined, their implementation must fit into these time frames if they
are to maximize their benefit to the particle physics community. To fit this schedule, a newly proposed
implementation would need to have a demonstration in 2018 to prove viability. Two years later, in
2020, the proposed idea needs to attain a level of maturity to be included in the HL-LHC Technical
Design Report. The project should then be further refined towards a large scale test around the middle
of Run 3, about 2022. Run 3 is scheduled to end in late 2023, after which point the project must then
be adapted to the HL-LHC software and physics analysis environment as it will be relied on by the
experiment.

7.3. Steps to Deployment

The path of taking a machine learning idea from conception to community-wide acceptance and
deployment will entail several stages, as appropriate. There are ample opportunities to make the
process more efficient. For example, in many steps having common data sets, as discussed in
Section 3.4, will likely accelerate the progress.

(i) Problem formulation and data set preparation: Problem formulation is the first step in
building a machine learning algorithm. The inputs and desired output need to be established.
The training and validation data sets must be identified and simulated. In many cases, these data
sets are large, and resources must be identified to possibly create and store the data. In most
cases, the data needs to be processed into a form suitable for input into the algorithm. Since
these steps are often lengthy, common data sets with well-defined problems will be very helpful.

(ii) Feasibility and demonstration: Given a dataset, appropriate machine learning algorithms
need to be investigated and evaluated for their ability to solve the problem. In some cases, such
studies can be preformed on simplified data sets.

(iii) First application: An application of the solution to one or a few specific physics analysis
examples where the ML technique significantly improves the physics result. The incorporation
of the technique into the computing work-flow will likely be very specific to the application and
require significant manual intervention.

(iv) Scaling and optimization: Evolving from a demonstration to a general solution requires the
use of realistic data sets with full detector simulation, noise, etc. Furthermore, the solution
will also require optimization to achieve nominal physics and computing performance. A good
practice would be to apply the solution to a specific physics analysis. This stage will likely require
significant computing resources to scale solutions to the full detector and data sets.

(v) Integration and Validation: The solution needs to be incorporated into the experimental
software and work-flow and must be validated.

As an example, consider the simulation physics driver. An effort has recently started to build
generative models that can significantly accelerate the simulation of particle showers in calorimeters.
These early efforts are based on simplified data sets specifically created for this problem, without the
complications of realistic data and limited to a small section of the calorimeter. The first papers [2]
use generative adversarial networks to generate calorimetric data which are reasonably faithful but
still require tuning. The next step involves exploration of neural network architectures and system-
atic hyper-parameter scans on HPCs to achieve the required performance. The technique can be
applied to several possible searches at LHC that involve boosted objects, where simulation samples
require full GEANT-based simulation and are therefore limited in statistics due to resource limitations.

The process of employing the new technique in a publication will elicit scrutiny by the full ex-
periment, effectively validating the technique. Once the technique is accepted, it can be generalized
beyond this first application and then incorporated into the experiment’s software for use by others.
Finally, as the technique is applied to an increasing number of physics analyses, the technique will be
incorporated into the experiment’s production work-flows.

A similar deployment and integration model can be applied to all of the major research and
development ideas described in Chapter 2.



8. Conclusions

As particle physics moves into the post-Higgs boson discovery era, the physics drivers of the High-
Luminosity Large Hadron Collider and future neutrino experiments will require increasingly more
powerful identification and reconstruction algorithms to extract rare signals from copious and chal-
lenging backgrounds.

Machine learning algorithms are already state of the art in many areas of particle physics and will
likely be called on to take on a greater role in solving upcoming data analysis and event reconstruction
challenges. In this document we have outlined the promising areas of research and development
applications of machine learning in particle physics and focused on addressing the most important
science drivers with these initiatives. Additionally, we identified the need for greater collaboration
with external communities in machine learning and a need to train the particle physics community
in machine learning. We also provided a roadmap for acceptance and implementation of described
research and development initiatives into the workflows of particle physics experiments.
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