

SUPERSONIC GAS-JET BEAM PROFILE MONITOR

Hao Zhang

- □ Gas-jet project review
 - The gas-jet setup in Cl
 - Mechanical design
 - Vacuum consideration
 - Beam profile Measurement and resolution
 - Gas dynamics
 - Alignment issue and comments
 - Brief discussion of the on-going BIF mode experiment
 - Preliminary result
 - Possible explanation and solution

Get-jet Monitor Setup

Generation of supersonic gas jet

UNIVERSITY OF

LIVERPO

Conical skimmer 180 µm diame

HLLHC Collaboration meeting at CERN 11/10/2016 hao.zhang@cockcroft.ac.uk

The Cockcroft Institute

Vacuum consideration

Number	1	2	3	4	6
Jet off (mbar)	<5.0*10-4	2.1*10-6	9.7*10 ⁻⁸	1 .8 *10 ⁻⁸	5.36*10-10
Jet on (mbar)	1.19*10 ⁻³	6.9*10 ⁻⁵	4.8*10-6	2.3*10 ⁻⁸	1.21*10 ⁻⁹

Scroll Pump

Number	Brand	Туре	Pumping Speed
1	ScrollVAC	SC5D	5 m ³ /h
2	ScrollVAC	SD30D	30 m ³ /h
3	ScrollVAC	SD15D	15 m ³ /h
4	ScrollVAC	SD15D	15 m ³ /h

Turbo Pump

	Brand	Туре	Pumping Speed*
1	Pfeiffer	TMU200MP	180 L/s
2	Leybold	SL300	270 L/s
3	Pfeiffer	Hipace80	67 L/s
4	Leybold	SL700	690 L/s
5	Pfeiffer	Hipace80	67 L/s
6	Leybold	SL300	270 L/s

Pirani Gauge

Number	Brand	Туре	Min pressure
1	Laybold Thermovac	TTR91 DN16KF	5*10 ⁻⁴ mbar

Ion Gauge

Number	Brand	Туре	Min pressure
2	Laybold Ionivac	Sensor IE514	2*10 ⁻¹² mbar
3	Laybold Ionivac	Sensor IE514	2*10 ⁻¹² mbar
4	Pfeiffer	PBR260	5*10 ⁻¹⁰ mbar
5	Pfeiffer	PBR260	5*10 ⁻¹⁰ mbar
6	Laybold Ionivac	Sensor IE514	2*10 ⁻¹² mbar

*based on N_2 gas.

QUASAR

he Cockcroft Institute

Setting	Value
Energy	3.75 keV
Current	~5.0 <i>µ</i> A
External field	7.5 kV/m
Exposure	70 ms

size	Value
Xrms	0.37
Yrms	1.21
Xrms from residual	1.05

Setting	Value
Energy	3.5 keV
Current	~7.0 <i>µ</i> A
External field	8.0 kV/m
Exposure	120 ms

size	Value
Xrms	0.54
Yrms	0.56
Xrms from residual	1.34

Image broadening because of thermal drift and magnification of external fields

QÜASAR

Movable gauge

Gauge signal is amplified by pico-ampere meter and record by scope.

Nozzle skimmer distance study

For our case,
$$P_0 = 5$$
 bar,
 $P_b \sim 1.0e-3$ mbar
 $=> x_M/d = 1500;$

$$d = 30 \mu m = x_{M} = 45 mm$$

Zone of silence: isentropic, $M_a \gg 1$, properties independent of $P_b \Rightarrow$ molecular beam extracted

Mach disk location (x_{M}/d) = 0.67 (P_{0}/P_{b})^{1/2} (γ independent) Mach diameter ~0.5 x_{M} ; Barrel shock width ~0.75 x_{M} (γ , P_{0}/P_{b} dependent)

This curve give a Mach disk about 25 mm, which is in the same order of magnitude with the calculation.

Gas density measurement

Small acceptance region

Resent measurement shows Nozzle is tilted by 0.115⁰ when pumping down and translated by 1.8 mm towards the downstream direction Nozzle-slimmer distance is 1-10 mm

Skimmer diameter is 180 µm

nozzle-skimmer distance (mm)

This will cause a reduced density as we see from the images when we change the skimmer.

What is new

Setting	Value
Inlet pressure	5 bar
Energy	4.5 keV
Current	~7.0 <i>µ</i> A
Exposure	1.1 s
Jet on time	2 s
Jet off time	2 s
Frame	2000
Total integration time	2200 s

UNIVERSITY OF LIVERPOOL

Cross section:

 $\sigma_p \approx 2.8{\cdot}10^{\text{--}20}~cm^2$

Based on 7 TeV Proton

Number of Photon detected :

 $N_{\gamma} = \sigma \cdot \frac{I \cdot \Delta t}{e} \cdot n \cdot d \cdot \frac{\Omega}{4\pi} \cdot T \cdot T_{f} \cdot \eta_{pc} \cdot \eta_{MCP}$

 $N_{\gamma} \approx 1.5 \cdot 10^{21} \cdot \sigma \cdot \Delta t_{\rm c}$

Proton detection:

Electron detection:

24 ms/photon 0.7 ms/photon
$$\begin{split} & \text{Based on 10keV electron} \\ & \sigma^{\text{e}_{391}} \approx 9.2 \cdot 10^{\text{-19}} \ \text{cm}^2 \\ & \sigma^{\text{e}_{337}} \approx 1.48 \cdot 10^{\text{-23}} \ \text{cm}^2 \end{split}$$

<i>I</i> (electron current)	10A
n (gas jet density)	2.5e10 cm ⁻³
d (jet thickness)	0.5 mm
Ω(acceptance solid angle)	$4\pi \cdot 10e-5 \text{ sr}$
$\eta_{ m pc}$ (MCP photocathode efficiency)	0.2
$\eta_{\rm MCP}$ (MCP detection efficiency)	0.5
T(Transmittance of optics)	0.65
T_f (Transmittance of band pass filter)	0.3

- □ Jet and e-beam does not meet each other.
 - Scan the e-beam vertically until they meet.
 - We did try but We don't know how much we move the electron beam. Previously we removed phosphor screen in the back to prevent the light contamination from phosphor but we lose the sense of location of the electrons.
 - Fix: we will redo the scan but with the screen re-installed with a gated valve
- Reaction rate is low

Long integration time, each data point need 2 hour, and each scan will take 20 data point.

- □ Increase the gas jet density (which might give us a factor of 5)
 - Tilted nozzle problem.
 - Large 3rd skimmer has a large acceptance angle and thus have a larger density. See next slide.
 - Fix: we get the skimmer installed recently.
- Lower the E-beam energy
 - IkeV E-beam has a larger cross section. (about a factor of 2)
- Higher current electron gun (Very expensive, about \$30k)
 - Increase current from ~7uA to 1 mA (give us a factor about 200)

Summary

- We successfully use the supersonic gas jet to monitor beam profile in ionization mode.
- We have a tool to measure the jet density which can be used to benchmark the simulation.
- Still make progress on the BIF mode.

