

# Fluorescence Profile Monitor for the CERN e-Lens

S. Udrea, P. Forck

GSI Helmholtz-Zentrum für Schwerionenforschung, Darmstadt, Germany





>Beam Induced Fluorescence (BIF) working principle and features

Characteristics of the CERN e-lens setup

 $> N_2$  as working gas

➢Ion and electron dynamics

➢Ne as working gas

≻Optics

≻Open questions

➤Conclusions



### **Beam Induced Fluorescence Features @ GSI**

- Based upon the detection of photons emitted by residual or injected (low pressure) gas molecules
- Little influence on the beam
- Single pulse observation possible; down to  $\approx$  1  $\mu s$  time resolution
- High resolution, e.g. 0.2 mm/pixel, can be easily matched to application
- Commercial image intensifier available
- Compact installation, e.g. 25 cm for both planes





## **Intensified CCD working principle**



651

## **BIF-Monitors at the GSI UNILAC**

Six BIF stations at the GSI LINAC:

- 2 x image intensified CCD cameras each
- Optics with reproduction scale 0.2 mm/pixel
- Insertion length 25 cm for both directions only
- Single macro-pulse observation



F. Becker (GSI) et al., Proc. DIPAC'07, C. Andre (GSI) et al., Proc. DIPAC'11, IBIC'14



#### **E-Lens and BIF @ CERN**



#### **Fluorescence of different gases**



Several Ne<sup>+</sup> lines mainly corresponding to different  $[2s^22p^4(^{3}P)]3p \rightarrow 3s$ transitions and with life times below 10 ns.

The strong lines correspond to the  $B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+$  electronic transition band of  $N_2^+$ , life times are of about 60 ns.

**Note:** Nitrogen has a higher photon yield than noble gases; scaling intensity by energy loss results in an almost constant value for noble gases.

**BIF Profile Monitor** 

F. Becker, Ph.D. thesis, T.U. Darmstadt, Germany, 2009

*E-Lens Collab. Meeting, Oct.* 11<sup>th</sup>, 2016

-15

 $N_2 + p/e^- \rightarrow (N_2^+)^* + e^- + p/e^- \rightarrow N_2^+ + \gamma + e^- + p/e^-$ 

Leads to the electronic transition  $B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+$  of the molecular ion with wavelengths around 391 nm, depending upon involved vibrational and rotational states

 $N_2 + e^- \rightarrow (N_2)^* + e^- \rightarrow N_2 + \gamma + e^-$ 

Drives the electronic transition  $C^3\Pi_u \rightarrow B^3\Pi_g$  of the neutral molecule with wavelengths around 337 nm. This process cannot be initiated directly by protons.

**Note:** Ionization is relevant too, due to the generation of secondary low energy electrons with high cross sections for excitation and/or ionization of  $N_2$ .



## N<sub>2</sub> as working gas: $C^3\Pi_u \rightarrow B^3\Pi_g$ cross section for e<sup>-</sup>



E-Lens Collab. Meeting, Oct. 11th, 2016

## $N_2$ as working gas: $B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+$ cross section for e



*E-Lens Collab. Meeting, Oct.* 11<sup>th</sup>, 2016

## $N_2$ as working gas: $B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+$ cross section for $p^+$



*E-Lens Collab. Meeting, Oct.* 11<sup>th</sup>, 2016

## N, as working gas: ionization cross section for e



$$N_{\gamma} = \sigma \cdot \frac{I \cdot \Delta t}{e} \cdot n \cdot d \cdot \frac{\Omega}{4\pi} \cdot T \cdot T_{f} \cdot \eta_{pc} \cdot \eta_{MCP}$$

- $N_v$  = average number of photons detected during time  $\Delta t$
- $\sigma$  = cross section of the photon generation process
- I = electron or proton current (electrical)
- E = elementary charge
- n = gas density
- d = distance traveled through gas (curtain thickness)
- $\Omega$  = solid angle of the optics
- T = transmittance of the optical system
- $T_{f}$  = transmittance of the optical filter
- $\eta_{pc}$  = quatum efficiency of the photocathode
- $\eta_{MCP}$  = detection efficiency of the MCP



## N<sub>2</sub> as working gas: specific detection time

$$N_{\gamma} = \sigma \cdot \frac{I \cdot \Delta t}{e} \cdot n \cdot d \cdot \frac{\Omega}{4\pi} \cdot T \cdot T_{f} \cdot \eta_{pc} \cdot \eta_{MCP}$$
$$\Delta t_{s}(391, p^{+}) \approx 20 \text{ ms/photon}$$
$$\Delta t_{s}(391, e^{-}) \approx 0.7 \text{ ms/photon}$$

 $\Delta t_s(391, e) \approx 0.7 \text{ ms/pnoton}$  $\Delta t_s(337, e^-) \approx 46 \text{ s/photon}$ 

$$I = 1 A$$
  
n = 2.5 · 10<sup>10</sup> cm<sup>-3</sup>  
d = 5 · 10<sup>-2</sup> cm  
\Omega = 4 \pi 10<sup>-5</sup> sr  
T = 65%  
T<sub>f</sub> = 30%  
η<sub>pc</sub> = 20%  
η<sub>MCP</sub> = 50%

**BIF Profile Monitor** 

**Note:** For the present setup at the Cockroft Institute the cross section (a) 391 nm is twice as high, the solid angle at an f-ratio of 5.6 is as considered above but the electron current is approx. 10  $\mu$ A. This results in  $\Delta t_s(391, e^-) \approx 35$  s/photon.



#### First signal at Cockroft (part 1)





#### First signal at Cockroft (part 2)



#### Ion and electron dynamics: electric field



E-Lens Collab. Meeting, Oct. 11th, 2016

#### Ion and electron dynamics: N<sub>2</sub> ions (part 1)



*E-Lens Collab. Meeting, Oct.* 11<sup>th</sup>, 2016

#### Ion and electron dynamics: N, ions (part 2)



*E-Lens Collab. Meeting, Oct.* 11<sup>th</sup>, 2016

## Ion and electron dynamics: electrons (part 1)



*E-Lens Collab. Meeting, Oct.* 11<sup>th</sup>, 2016

## Ion and electron dynamics: electrons (part 2)



#### Ne as working gas

- Strong fluorescence due to neutrals
- Ne<sup>+</sup> fluorescence from levels with short life times (< 10 ns)
- Mass comparable with that of N<sub>2</sub>
- Emission by neutrals at long wavelengths ( $\lambda > 580$  nm); photocathodes with higher sensitivity in this region lead to a larger rate of dark counts
- Presently no known data about fluorescence cross sections due to relativistic protons
- Presently known data on cross sections for the interaction with electrons just for the neutral atom, no data regarding combined ionization and excitation

*E-Lens Collab. Meeting, Oct.* 11<sup>th</sup>, 2016



#### **Optics: requirements**

- Good transmission in the near UV, at least in the region 300 to 400 nm
- Good resolution, well corrected geometrical and chromatic aberrations
- A magnification of about 1 (absolute value) due to the relatively low resolution of the double MCP stack of at most 20 lp/mm
- Relatively large working distance allows the placement of the detector system at d > 400 mm from the beam axis
- Large acceptance, a solid angle of about  $4\pi \cdot 10^{-4}$  sr desirable
- Total depth of field up to 15 mm with reasonable blur

*E-Lens Collab. Meeting, Oct.* 11<sup>th</sup>, 2016



## **Optics: commercially available lens (part 1)**



### **Optics: commercially available lens (part 2)**



*E-Lens Collab. Meeting, Oct.* 11<sup>th</sup>, 2016

### **Optics: commercially available lens (part 3)**



#### **Optics: commercially available lens (part 4)**



## **Optics: custom lens (part 1)**

Optimized for low chromatic aberrations at short wavelengths and 1:-1 imaging Transmission down to 310 nm Geometric aberrations not yet corrected Focal length (EFL): 210 mm Maximum aperture: 22 mm Lens diameter: 25 mm

Aperture limited to 22 mm  $\Omega \approx 5\pi \cdot 10^{-4} \, \text{sr}$ 

BIF Profile Monitor

1 – Fused silica

$$2 - BaF_{2}$$

3 – LLF1HTi



*E-Lens Collab. Meeting, Oct.* 11<sup>th</sup>, 2016

#### **Optics: custom lens (part 2)**





*E-Lens Collab. Meeting, Oct.* 11<sup>th</sup>, 2016

#### **Optics: custom lens (part 3)**



*E-Lens Collab. Meeting, Oct.* 11<sup>th</sup>, 2016

#### **Optics: custom lens (part 4)**



#### **Open questions**

- Role of secondary electrons
- Cleaning electrodes for secondary electrons
- Radiation hardness and scintillation of optical materials
- Move to an optical system made exclusively of mirrors
- How to best distinguish between electron and proton beam
- Reasons for low signal at the Cockcroft Institute; acquisition of a better electron gun
- Use of another detector system: emCCD
- What are the priorities





#### Conclusions

- MCP based detector system is a good option
- Commercially available optics identified
- Alternative custom lens with promising characteristics
- Integration times in case of  $\rm N_2$  got estimated and are short enough for detection at 391 nm
- Setup at Cockroft delivered first signal from background gas

