

What can be gained with a HEL in terms of increased diffusion for HL-LHC

<u>Miriam Fitterer</u>, G. Stancari, A. Valishev, Fermilab R. Bruce, D. Perini, S. Redaelli, A. Rossi, J. Wagner, CERN

CERN, Review of Hollow E-Lens Needs for HL-LHC October 6th, 2016

Literature HEL simulations

- simulations for LHC:
 - V. Previtali, G. Stancari, A. Valishev , S. Redaelli, FERMILAB-TM-2560-APC
 - A. Valishev, FERMILAB-TM-2584-APC
- HL-LHC simulations and experimental results (first drafts published):
 - HL-LHC: M. Fitterer, G. Stancari, A. Valishev, S. Redaelli: FERMILAB-TM-2636-AD
 - LHC experiment: M. Fitterer, G. Stancari, A. Valishev FERMILAB-TM-2635-AD

available codes: SixTrack, LifeTrac and Merlin

main objectives:

- effect of HEL on:
 - halo -> compare halo removal rates := $\Delta I_{halo}/\Delta t$
 - halo removal rates for different scenarios with and without HEL
 - obtain halo removal rates vs amplitude
 - study effect of influence of longitudinal plane
 - beam core -> emittance + losses

strong dependence on beam distribution model:

- beam core: 6D Gaussian distribution cut at 6 σ
- halo:
 - to predict the true losses a good knowledge of halo population and diffusion is needed (see Gianluca's, Yanni's and Fanouria's talks) -> in general very difficult task!
 - instead use uniform transverse distribution between 4 and 6 σ and with δp=0 and Gaussian in (z-δp/p) cut at 6σ

10/6/16

simulation parameters:

- nominal LHC V6.503 collision optics ($\beta^*_{IP1/5}$ =55 cm)
- beam parameters: N_p=1.15x10¹¹, ε_N=3.75 μm,
 σ_E=1.1x10⁻⁴, σ_z=7.5 cm
- HEL in IR4 with $\beta_x = \beta_y$

main results for halo:

- no HEL: minimal losses with beambeam (0.002%/s = 0.12%/min = 8%/h)
- with HEL, DC mode, I_{HEL} = 3.6 A:
 - halo removal rates much smaller without beam-beam than with beam-beam
 - strong dependence on momentum
- random mode (current modulation): HEL becomes dominant loss mechanism

HEL	beam-	long.	halo removal rate			
mode	beam	distr.	%/s	%/h		
DC, 3.6 A	no	Coupsian	0.01	40		
	yes	Gaussian	0.07	250		
random 3.6 A	no	Coursian	0.33	1180		
	yes	Gaussian	0.35	1267		

for details: V. Previtali, G. Stancari, A. Valishev , S. Redaelli, FERMILAB-TM-2560-APC, FERMILAB-TM-2584-APC

10/6/16

🛠 Fermilab

LHC HEL simulations

main results for core:

- HEL bends: in DC mode no effect
- random mode (current modulation): HEL bends induce emittance growth for U-shape, not for S-shape due to uncompensated kicks for U-shape (without beam-beam + 10% modulation: S-shape 0 %/h, U-shape 38 %/h)

Simulation studies and experiments:

- beam core (for details see FERMILAB-TM-2635-AD):
 - in DC mode no emittance growth is expected from the HEL
 - in pulsed mode the HEL can induce noise on the beam core -> emittance growth
 - experiment this September at the LHC at injection + simulations in order to estimate tolerance on noise (in progress), see <u>LSWG meeting</u>.
- halo (for details see FERMILAB-TM-2636-AD):
 - comparison of halo removal rates without and with HEL for different key scenarios in order to evaluate of HEL performance at top energy
 - impact of a pulsed operation. Option for pulsing/modulating are currently:
 - random: random modulation of the e-lens current (white noise)
 - resonant: switching the e-lens on/off every nth turn (drives nth order resonances)

HL-LHC HEL halo simulations

LARP HL-LHC scenarios:

LHC cycle	$\beta_{x,y}^{*}$ [m] IP1/5	β* [m] IP2/8	x-angle [µrad] (IP1/2/5/8)	spectrometer polarity (IP2/8)	separation [mm] IP1/2/5/8	$Q'_{x/y}$	<i>I</i> _{MO} [A]
						15	-550
flat top	6.0,6.0 10.0/3.0	295/170/295/220	1/1	0.75/2.0/0.75/2.0	3	-550	
						3	0
start leveling	0.7,0.7	10.0/3.0	295/170/295/220	1/1	0/0/0/0	3	-550
squeezed round	0.15,0.15	10.0/3.0	295/170/295/220	1/1	0/0/0/0	3	-550
squeezed flat	0.075,0.30	10.0/3.0	275/170/275/220	1/1	0/0/0/0	3	-550

beta* leveling:

$\beta_{x,y}(\text{IP1/5})$ [m]	bunch intensity [10 ¹¹]
0.70,0.70	2.2
0.42,0.42	1.7
0.30,0.30	1.5
0.15,0.15	1.1

HL-LHC HEL halo simulations

simulation parameters:

- code: LifeTrac
- HL-LHC layout V1.0
- HEL in IR4 with $\beta_x = \beta_{y_1}$ inner radius 4 σ (=beam sigma with 2.5 μ m emittance)
- HEL current of 3.6 A (CDR value), 5.0 A (maximum of current gun)
- halo distribution: uniform transverse distribution between 4 and 6 σ with δp/p=0 or Gaussian in (z-δp/p) cut at 6 σ (σ = beam sigma)

main observations (details see next slides):

- halo removal rates depend on:
 - δp/p, smallest rates for δp/p=0 (strong dependence, up to x100 or more)
 - -> in the following only removal rates for Gaussian in $(z, \delta p/p)$
 - non-linearities: the "stronger" the non-linearity the higher the halo removal rate
- non linearities considered:
 - chromaticity and Landau damping octupoles needed for beam stability in particular for separated beams (flat top)
 - beam-beam (full crabbing + long-range)
 - magnetic errors ("standard" errors from latest error tables as used for dynamic aperture simulations)
- pulsing considerably increases the halo removal rates. Random pulsing is most efficient.

🔁 Fermilab

LARI

HL-LHC HEL halo simulations

Flat top – dependency on chromaticy and octupole current:

- halo removal rates for Q'=3, I_{MO}=0 could be very dependent on working point due to small tune spread
- highest halo removal rate for high chroma + octupoles + further increase with errors
- halo removal rates for 3.6 A between 0.06 %s (= 3.45 %/min = 207 %/h) and 0.15 %/s (= 9.25 %/min = 555 %/h)

🚰 Fermilab

LAR

Leveling – dependency on β^* and beam intensity (see leveling scenario):

- already losses without HEL (small DA)
- highest halo removal rate for β*=70 cm (smallest DA)
- halo removal rates for 3.6 A around x2 higher than at flat top, explicitly between 0.20 %s (= 11.70 %/min = 702 %/h) and 0.30 %/s (= 17.76 %/min = 1060 %/h)

🚰 Fermilab

HL-LHC HEL halo simulations

flat-top with pulsing:

- random mode: pulsing becomes dominant loss mechanism for (for random even the same for δp/p =0 and (z,δp/p))
- random mode much more effective than resonant mode, in particular for δp/p =0
- random, 3.6 A: around 0.92 %/s (= 55.26 %/min = 3320 %/h)
- resonant, 3.6 A: 0.14 %s (= 8.58 %/min = 514 %/h) to 0.22 %/s (= 13.14 %/min = 789 %/h)

Halo:

- HEL increases the halo removal rates in all cases considerably
- stronger non-linearities imply in general higher halo removal rates
- pulsing considerably increases the diffusion, random mode much more efficient than resonant mode
- small removal rates for separated beams compared to colliding beams
 - ➡ do we need to pulse at flat top in order to clean the halo within minutes?
- for colliding beams 11.70 %/min 17.76 %/min are reached, sufficient for continuous halo depletion ➡ no pulsing
- losses can differ by a order of magnitude for on and off-momentum particles
 - ➡ more studies needed: changes with real IR3/IR7 betatron and momentum cleaning, dependence on dispersion@HEL, …

Conclusion and Outlook

Core:

- in DC mode configuration no effect in terms of increased losses or emittance growth on the beam core is expected (even with U-shape)
- pulsed e-lens operation:
 - random mode much more efficient than resonant mode
 - with the resonant mode one could find an excitation pattern which doesn't affect the core, but depletes the halo (remember: only certain resonances are driven)
 - in case of profile imperfections in the e-beam, pulsing induces noise on the p-beam
 - ➡ solid definition of tolerances on profile imperfections needed

Backup Slides

DA for beta*-leveling HL-LHC

- minimum DA caluclated with LifeTrac
- no errors, octupole current of -550 A (MOF)
- spectrometer configuration in IR2/8 yielding smallest DA
- half crossing angle IR1/5: 295 urad
- beam-beam: full crabbing + long range

FMA analysis

Simulation Parameters LHC

for details: V. Previtali, G. Stancari, A. Valishev , S. Redaelli, FERMILAB-TM-2560-APC, FERMILAB-TM-2584-APC

- uniform transverse distribution between 4 and 6 σ , Gaussian in (z, $\delta p/p$) or $\delta p/p=0$
- nominal LHC V6.503 collision optics ($\beta^*_{IP1/5}$ =50 cm), no errors, no octupoles, Q'=2
- single collimator (black absorber) @ 6 σ
- equal $\beta_x = \beta_y = 180$ m @ e-lens, installed in IR4 @ -40 m from IP
- beam parameters: N_p =1.15x10¹¹, ε_N=3.75 μm, σ_E=1.1x10⁻⁴, σ_z=7.5 cm
- 10^4 particles, $5x10^6$ turns = 450 s real machine time
- with and without beam-beam
- in case of beam-beam: collisions in IP1/5/8, 94 long-range interactions, 25 ns bunch spacing

Simulation Parameters HL-LHC

for details: M. Fitterer, G. Stancari, A. Valishev, S. Redaelli: FERMILAB-TM-2636-AD

- uniform transverse distribution between 4 and 6 σ , Gaussian in (z, $\delta p/p$)
- HL-LHC V1.0 layout
- single collimator (black absorber) @ 6 σ
- equal β_x= β_y @ e-lens, installed in IR4 @ -40 m from IP, inner radius adjusted to 4 beam sigma (ε_N=2.5 μm)
- beam parameters flat top: $N_p=2.2x10^{11}$, $\epsilon_N=2.5 \ \mu m$, $\sigma_E=1.1x10^{-4}$, $\sigma_z=7.5 \ cm$
- beam parameters leveling: $N_p=1.1-2.2x10^{11}$, $\varepsilon_N=2.5 \ \mu m$, $\sigma_E=1.1x10^{-4}$, $\sigma_z=7.5 \ cm$
- 10⁴ particles, 10⁶ turns = 90 s real machine time
- with and without beam-beam
- in case of beam-beam: collisions in IP1/2/5/8, 25 ns bunch spacing, full crabbing + long range beam-beam, spectrometer configuration in IP2/8 featuring smallest DA
- latest error tables
- coupling: fine coupling correction stopped at closest1 (matching step omitted)

Halo removal rates HL-LHC at flat top

- uniform transverse distribution between 4 and 6 σ , Gaussian in (z, $\delta p/p$)
- HL-LHC V1.0 layout
- single collimator (black absorber) @ 6 σ

HEL current	β*(IP1/2/5/8) [cm]	Q'	oct. current [A]	errors	halo removal rate	
[A]					%/s	%/h
no HEL		3	0		0.000	0.9
		3	-550	no	0.001	2.9
		15	-550		0.001	3.2
		15	-550	yes	0.001	2.2
3.6		3	0		0.099	355.0
	6/10/6/3	3	-550	no	0.058	207.0
		15	-550		0.113	406.0
		15	-550	yes	0.154	555.0
5.0		3	0		0.178	642.0
		3 -550 no	no	0.140	505.0	
		15	-550		0.256	923.0
		15	-550	yes	0.311	1120.0
						5 Fermilal

Halo removal rates HL-LHC during β* leveling

- uniform transverse distribution between 4 and 6 σ , Gaussian in (z, $\delta p/p$)
- HL-LHC V1.0 layout
- single collimator (black absorber) @ 6 σ

HEL current	β*(IP1/5)	bunch intensity	Q'	oct. current	halo removal rate			
[A]	[cm]	[10 ¹¹]		[A]	%/s	%/h		
	7.5/30	2.2			0.065	234.0		
no HEL	15/15	1.1	3	-550	0.024	87.7		
	70/70	1.1			0.105	378.0		
	7.5/30	2.2			0.271	974.0		
3.6	15/15	1.1	3	-550	0.195	702.0		
	70/70	1.1			0.296	1060.0		
5.0	7.5/30	2.2	3		0.389	1400.0		
	15/15	1.1		-550	0.332	1200.0		
	70/70	1.1			0.403	1450.0		

Halo removal rates HL-LHC at flat top + pulsing

- uniform transverse distribution between 4 and 6 σ , Gaussian in (z, $\delta p/p$)
- HL-LHC V1.0 layout
- single collimator (black absorber) @ 6 σ

HEL current β*(IP1/2	β*(IP1/2/5/8)	pulsing	pulsing Q'	oct. current	halo removal rate	
[A]	[A] [cm]	pattern		[A]	%/s	%/h
		none (DC)		5 -550	0.113	406.0
		random			0.921	3320.0
3.6		2nd	15		0.161	578.0
		3rd			0.143	514.0
	6/10/6/3	4th			0.208	749.0
		5th			0.147	530.0
		6th			0.176	632.0
		7th			0.219	789.0
		8th			0.203	730.0
		9th			0.192	691.0
		10th			0.139	501.0
						— 52 rer

Halo removal rates HL-LHC at flat top + pulsing

- uniform transverse distribution between 4 and 6 σ , $\delta p/p = 0$
- HL-LHC V1.0 layout
- single collimator (black absorber) @ 6 σ

HEL current	HEL current β*(IP1/2/5/8) [A] [cm]	pulsing Q'		oct. current	halo removal rate		
[A]		pattern		[A]	%/s	%/h	
		none (DC)		15 -550	0.000	0.9	
		random			0.846	3050.0	
		2nd	15		0.001	2.2	
		3rd			0.003	11.8	
	6/10/6/3	4th			0.001	1.8	
3.6		5th			0.001	4.0	
		6th			0.001	4.1	
		7th			0.001	2.0	
		8th			0.001	3.1	
		9th			0.002	5.6	
	10th			0.001	5.1		
						52 Fer	'mi