

Operational experience of RHIC electron lenses and their effect on collimation and halo populations

W. Fischer, A. Drees and X. Gu Brookhaven National Laboratory

Review of the need for a hollow e-lens for the HL-LHC 6-7 October 2016, CERN

Contents

RHIC e-lens experience

- 1. RHIC electron lenses
 - Overview
 - Main design parameters and tolerances
- 2. Use in operation
- 3. Effect of the electron lenses on
 - Beam loss rate
 - Emittance
 - Experimental background rates

RHIC electron lenses

Overview

RHIC e-lens Parameters

TABLE I. Typical electron lens parameters for 2015 and design values (for up to 250 GeV proton energy).

Quantity	Unit	2015 value	Design value	
Distance of center from IP10	m	3.3 2.4		
Magnetic length L_e	m			
Gun solenoid field B_a	Т	0.31	<u>≤</u> 0.69	
Main solenoid field B_m	Т	5.0	2–6	±50 μm straightness
Cathode radius (2.7σ)	mm	7.5	4.1, 7.5	
rms beam size in main solenoid σ_e	$\mu \mathrm{m}$	650	≥ 300	Gaussian profile
Kinetic energy E_e	keV	5.0	≤ 10	size (45 μ m at 255 GeV/)
Relativistic factor β_e		0.14	≤ 0.2	
Electron beam current I_e	mA	600	≤ 1000	$\Delta I_e/I_e \leq 0.1\%$
Beam-beam parameter from lens ξ_e	0.001	+10	$\leq +15$	-

Technology sources: Tevatron e-lenses, RHIC EBIS

Operational control

RHIC electron lens

→	psBlu	e.xml - Synoptic Viewer			_ - ×
<u>File E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u> elp <u>L</u> ogs					
North Yellow Elens	Blue Electr	ron Lens (site wide names	(g9-)	So	uth DX Magnet 🛶
IP10 vacuum (Torr): 1.0e-11	BLM1 dose rate [rad/h]: 0.1 B-SMS current	sigma-e [mm]: 0.75 BLM [A]: 453.6 B-FF current [A]: 47	M2 dose rate [rad/h]: -0.4	CSB DX #9 vaci	uum (Torr): 4.0e-10 Kiaofeng G
G51 G51 G51 G51 G51	B-SMS field [B-GSB/CSB cu B-GS2/CS2 cu	T]: 5.82 B-FF field (T]: 2 rrent [A]: 700 ★ 719 field (T] rrent [A]: 710 ★ 737 field (T]	2.54 : 0.29 : 0.43	CS2 CS3 CS1 CS1 CS1	T T
BY-GS1 cur B-GSX curre Sun vacuum [Torr]: 2.7e-10 B-GSY curre Cathode Heater Status: Recovery Tabe	rent [A]: 666.2 + 657 field [T]: 0.4 nt [A]: 90 + 90 B-SI nt [A]: -80 + -80 B-SI PS HV Status: Recovery Tabe	41 BY-CS1 cur ↓× current [A]: 0 → 0 LY current [A]: 0 → 0 Beam Ready :	rrent[A]: 696.2 711 field B-CSX current [A]: 20 B-CSY current [A]: 80 Gauges Pe	(T): 0.45 20 80 Collector vacuu et Page PS Pet Page	um (Torr): 9.4e-09 MPS Pet Page
Beam Modes and Timing Off Burst Continuous Parasitic	Beamline Status YAG screen: Home Pinhole detector: Out In Collector: In Collector:	Beam Current and Energy Anode bias [kV]: -0.5 × Reflector [kV]: 1.6 × Cathode heater [A]: 2.75 ×	-0.50 Current [mA]: -1.60 Beam Size [mm]	800 <u>→</u> Do It 0.75 <u>→</u> -4.978	Modulator Constants P Value (uA V^-1.5) - DC: 2.70 Paras: 2.10
TrueDC e beam current [mA]: 860 NotchedDC Make Live	eBSD rate [Hz]: 4.6e+04 Gun valve: 0pen	Cathode bias [kV]: -5 + Modulator 1 [kV]: 0 +	-4.98 Collector [kV]:	3 ☆ 2.98 eam p Beam	Scale
Make Live TrueDC Burst Timing Pet Page	Gun valve: Open Collector valve: Open	Modulator 1 [kV]: 0 × Modulator 2 [kV]: 4.4 ×	0.00 MPS Status e B 4.44 OK	eam p Beam On On I	DC: 0.00 Paras: 1.18

Operational turn-on by sequencer. Synoptic display for control,.

e-lenses in operation

with collisions at 2 experiments

- 1. e-lenses turn on before collision (112 stores with both lenses without a single turn-on failure)
- 2. Beams into collision at PHENIX, collimators to store positions (requires PHENIX collisions)
- 3. Beams into collision at STAR and e-lenses e-lenses prevent emittance growth and/or beam loss for large beam-beam param. ξ
- 4. Lenses are gradually turned off when lattice alone can sustain bb parameter ξ

RHIC e-lenses

Operational reliability

Commissioning with Au beam in 2014

- commissioning in parallel to Au+Au operation, using last bunch(es) in train
- a few instances with large vacuum excursions, ~2 stores terminated
- a few instances with emittance growth, including solenoid quenches, recoverable with stochastic cooling
- Operation with polarized p beam in 2015
- after commissioning 112 of 156 p+p stores used both lenses
- no turn on failure, no store aborted due to equipment failure
- some stores aborted shortly after going into collision, after reducing e-beam size
- typical e-lens on-time ~1-1.5 h
- a few stores negatively affected by Blue e-lens e-beam instability (observed for $I_e > 500$ mA), terminated early

Additional emittance growth and loss rates from e-lens

E-lens in operation typically on for ~1h.

Tested additional emittance growth and loss in Yellow with 2 stores (6.75 h, 5.25 h long).

When not limited by beam-beam there is no additional emittance growth from the Yellow lens (400 mA), additional losses of 1-2%/h.

RHIC e-lenses

Effect on emittance growth

The plot shows the Yellow horizontal and vertical emittances, as measured by the Ionization Profile Monitor (IPM) for stores 18794 to 18857 in red.

Of the 35 stores shown, stores 18849 and 18855 had the Yellow electron lens on for 6.75 and 5.28 h respectively. For all other stores, the Yellow electron lens was on between 0.45 h and 1.83 h.

The time period for the selection of stores ends when the spin direction in the STAR experiment was changed from vertical to longitudinal. After a configuration change there may be transition effects, which we would like to exclude.

The time-dependent emittances for the two stores with significantly longer e-lens on-times are within the distribution of all stores.

RHIC e-lenses Effect on experimental background (I)

10

NATIONAL LABORATORY

Wolfram Fischer

RHIC e-lenses Effect on experimental background (II)

RHIC e-lenses Effect on experimental background (III) A. Drees

12

NATIONAL LABORATORY

RHIC e-lenses

Effect on collimation

13

Summary

RHIC e-lens experience

NATIONAL LABORATORY

- 2014: e-beam commissioning with Au+Au beam (stochastically cooled)
- 2015: operational head-on beam-beam compensation with p+p

- No turn-on failure, no abort due to equipment failure (112 stores)
- Effect on proton beam
 - beam loss rate increase: 1-2%/h
 - emittance growth: long e-lens on-time within distribution of typical stores typical stores 1–1.5 h long, only 2 stores with 5.28 and 6.75 h e-lens on-time
 - experimental background: ~2-3x increase acceptable, still lower than 2012 with 2x higher average luminosity
- Collimator settings can be affected by e-lens parameters, like other beam parameters

Additional material

Wolfram Fischer

RHIC electron lens

Layout

2 Bias-Beam Energy

3 Collector-Beam Power 4 GS1-Beam Size

RHIC electron lenses

- 1. Electron lenses in IR10 smallest distance to IP8 head-on beam-beam interaction (nonlinearities), available space
- 2. Both lenses in common area main solenoids compensate each other for coupling and spin, $\beta_x = \beta_y$ at e-lens locations drawback: β -functions relatively small (<= 10 m)
- 3. DC beam for compensation avoids noise introduced with HV switching (have pulsed operation for set-up and diagnostics)
- 4. Superconducting main solenoid need high field to match electron and proton beam size
- 5. Field straightness correctors incorporated in sc main solenoid
- 6. Transport solenoids and orbit correctors warm capital cost lower than for sc (sc transport solenoids with break-even time 5-10 years)
- 7. Diagnostics

basic diagnostic consists of BPMs and RHIC instrumentation (BTF, lifetime), e-bam profile monitors, backscattered electron monitor, halo detection

8. Allow for commissioning in parallel to physic operation

Basic design decisions

HardwareSolenoid field straightness (A. Jain)Straightness tolerances (±15% rms beam size) for sufficient overlapMeasured with magnetic needle and mirror, pulled on track

Electron beam

Transverse profile (I)

Xiaofeng Gu

Gaussian profile critical for correction of nonlinear effects

- 2 devices for transverse profile measurement:
- YAG screen
- pinhole detector

Electron beam

Transverse profile (II)

Xiaofeng Gu

Fig. 5 shows electron beam profiles and their Gaussian fits for the IrCe cathode and the tungsten dispenser cathode, measured using a YAG screen near the collector. The measured profiles were fitted to Gaussian distributions with the coefficient of determination R^2 of 0.9995 and 0.9999 respectively. The measured cathode radius to rms beam size ratio r/ σ was 2.8 for the IrCe and 2.7 for the tungsten cathode, while the designed value was 2.8.

Transverse alignment

Backscattered electrons

- 2 BPMs in both lenses to bring e- and A- beam in proximity BPMs see 3 beams: 2 hadron and 1 electron beam (rise/fall time 10x longer)
- Use detection of backscattered electrons to maximize overlap P. Thieberger [PRAB 19, 041002 (2016)]

- Signal with large dynamic range (~10⁶)
 - Used for automatic position and angle alignment, same as luminosity maximization

Setup Orbit XAngle				
IR Steering Vernier Scan	Optimize One	Optimize Many		
IR: 10 = Scan Ring: Blue =	0,150 0,300 0,102 Calc. Max	1.157e+00 1.124e+00 1.161e+00 . = 1.159e+00	good good good chisq = 0.0e+00	
First Plane: Y =	Ended Wed	May 7 13;28;40	2014	I
Second Plane: X	Optimization Ip:10, Rin Initial St	h Begun Wed May hg:Blue, Plane:> tep Size = 0,15	7 13:28:40 2014 <, Steer:Position , Threshold % = 10.0	
Scaler: ElensBlu =	Bump Tota	ElensBlu	Status	I
Step Size (mm): 0.150	0,000 0,150 -0,150 0,026	1.162e+00 1.142e+00 1.121e+00 1.160e+00	good good good good	
Terrest (kl/z)	Calc, Max	. = 1,163e+00	chisq = 0.0e+00	
Target (KHZ):	Ended Wed	May 7 13:29:24	4 2014	-
Optimize	1.2 1.1 9 9 1.0 -0.6	-0.4 -0.2 0.0	0.2 0.4 0.6 0.6	
Blue: Off Yellow: Off	1	Bump Tot * Plane;Y	ai (non) ⊏ Plane;X	

Electron beam

Current ripple

A stable DC electron beam current of 0.9 A with a turn-to-turn ripple of ≤0.1%

1. Ripple is less than 0.075%;

Measured anode voltage via 78 kHz pulse mode, which the pulse itself has more noise than DC;

Took 122 waveforms. Each waveform is divided to 10 intervals with 30 ns length;

- Average each 122 waveforms for these ten intervals; The total force seen from e-beam;
- Change voltage ripple to current ripples with 1.5 times;

6. Current is 950 mA

Head-on bb compensation

Footprint compression

tune distribution can be measured with BTF and p+AI collisions

proton beam: $(Q_x, Q_y) = (.685, .695)$; AI beam: $(Q_x, Q_y) = (.685, .695)$; $\Delta Q_x, \Delta Q_y >> \xi =>$ no coherent modes

Head-on bb compensation

increase in bb parameter ξ with lens

Initial emittance and 5 min later, beam loss over 5 min

Note: It is possible that higher beam-beam parameters ξ can demonstrated in the
future, without and with lens (ξ sensitive to orbit, tune, chromaticity etc.)

Head-on bb compensation

quantity	unit	operations		tests for max ξ_p			
		(avg.	over 10	without	with	with	
		\mathbf{best}	$\operatorname{stores})$	e-lens	e-lens	e-lens	
		2012	2015		2015 -		
bunch intensity N_p	10^{11}	1.6	2.25	2.6	2.15	2.0	
no of bunche k_b		109	111	48	111	30	
$\beta_{x,y}^*$ at IP6, IP8 (p+p)	m	0.85	0.85		0.85 -	_	
$\beta_{x,y}^{*}$ at e-lens (p+e)	m	10.5	15.0		15.0 -	_	
lattice tunes (Q_x, Q_y)		(0.69)	5,0.685)	-(0.6	95,0.68	(5) -	
rms emittance ϵ_n	$\mu{ m m}$	3.3	2.8	3.5	2.4	1.9	
rms beam size IP6/8 σ_p^*	$\mu{ m m}$	165	150	170	150	125	
rms beam size e-lens σ_p	$\mu{ m m}$		630	700	645	520	
rms bunch length σ_s	m	0.63	0.70	0.77	0.70	0.56	
hourglass factor H		0.74	0.75	0.78	0.81	0.86	<u>لا 129</u> 0/
beam-beam param. ξ_p/IP	0.001	-5.8	-9.7	-9.1	<u>-10≯</u>	-12.6	ς τ 30 /0
# of beam-beam IPs		2	2+1*	2	$2+1^{*}$	$2+1^{*}$	w/o and w/
luminosity \mathcal{L}_{peak} 10 ³⁰ cm ⁻	$^{-2}s^{-1}$	46	115	72	115	40	electron lens
luminosity $\mathcal{L}_{avg} = 10^{30} \text{cm}^3$	$^{-2}s^{-1}$	33	63				

 L_{peak} 2.5× increase

 L_{avg} 1.9× increase (+66% w/o e-lens, +91% w/ e-lens)

Note: It is possible that higher beam-beam parameters ξ can demonstrated in the future, without and with lens (ξ sensitive to orbit, tune, chromaticity etc.)
[W. Fischer et al., PRL 115, 264801 (2015).]

Wolfram Fischer

