What did we learn about HALO population during Long-range beam-beam studies and MDs?

HI-LHC PROJEC

Y.Papaphilippou

Thanks to

G. Arduini, F. Antoniou, M. Crouch, S. Fartoukh, S. Papadopoulou, D. Pellegrini, T. Pieloni, B. Salvachua, A. Valishev

Review of the needs for a hollow e-lens for the HL-LHC, 6-7 October 2016, CERN

Content

- Observations during 2012 with respect to Longrange beam-beam (BBLR)
 - Emittance blow-up and losses
 - Correlation with BBLR
- Observations during 2015 BBLR experiments
 - Intensity decay versus number of LRs
 - Effect of chromaticity and octupoles
- Observations during 2015 BBLR experiments
 - Intensity decay versus number of LRs and losses
 - Emittance evolution
- Simulations
 - DA vs crossing angle and intensity
 - Simulating distributions
- Extrapolation of observations to HL-LHC

Observations during 2012 run with respect to BBLR

Emittance blow-up and beam losses

F. Antoniou

- Convoluted emittance inferred from luminosity
- Beam current from FBCT
- Unstable bunches are filtered out
- Relevant to HL-LHC the 1st hour of stable beams
- Emittance blow-up (~10-20% for this fill) correlated to beam brightness
 - Similar for both beams
 - **Beam losses** (on top of burn-off ~1-4%) also correlated to brightness
 - More for B1 than B2

Y. Papaphilippou - E-lens review - 06/10/2016

Effect of number of LRs on emittance growth F. Antoniou

- Convoluted emittance growth vs number of LRs color-coded with brightness
- Dependence on both number of LRs and brightness for 1st h in SB
- Dependence on LRs is lost between 3-5 h in SB

Observations during 2015 BBLR experiments

BBLR MD in 2015 T. Pieloni et al.

- Emittances of 2.4 mm, intensities 1.1e11ppb with 48 bunches train
- Reduce crossing angle in steps from Total angle 290 to 130 mrad and quantify impact on beam intensity, emittances and luminosity lifetimes
 - Issue with large orbit drifts and collision loss
- Reduce Q' and Octupoles

Y. Papaphilippou - E-lens review - 06/10/2016

Beam 1 Intensity decay versus bunch

M. Crouch et al.

Intensity lifetimes versus crossing angle M. Crouch et al.

- Beam lifetimes reduced from 30 to 8 (beam 1) or 5 h (beam 2)
- For full crossing angles below 180 µrad limit lifetimes drop to 20 h
- Onset of losses with LR patterns occurs at a beam-beam separation of 8.5 σ

Beam 1 Intensity versus Q' and Octupoles

Observations during 2016 BBLR experiments

Beam-Beam Long-range experiment in 2016

T. Pieloni et al.

- Bunch intensities of ~1.3e11 with emittances of ~2.5µm @ collision
- Three trains of 48 bunches colliding in IP1/IP5 and one also in IP2 and IP8

Beam-Beam Long-range experiment in 2016

T. Pieloni et al.

- Crossing angle scan in both IP1 and IP5: reduce in steps and monitor effect on beam lifetime (~20 minutes)
- Test chromaticity and Landau octupoles impact
- Issue with orbit drifts at higher crossing angles (370-310µrad)
- Fast lifetime drop at first time 5 min followed by slow recovery for 15 minutes at new angle

Long Range experiment 2016: intensity decay T. Pieloni et al. $d_{sep} = \sqrt{rac{eta^*}{\epsilon_{x,y}/\gamma}}\phi$

- Plotting initial and final intensity decay versus crossing angle
- Only **Beam 1** visibly affected by crossing angle reduction
- For angles in range 310-250 µrad, losses do not follow crossing angle reduction

Long Range experiment 2016: intensity decay

T. Pieloni et al.

- For 250-230 µrad, start observing beam-beam long range pattern in losses
- Below 230 µrad, BBLR becoming dominant

Long Range experiment 2016: intensity decay T. Pieloni et al.

- From 370 to 250 µrad no long-range pattern with long lifetimes of 20-30 h
- From 250 to 230 µrad, long-range effects appear, reducing lifetimes to 15-10 h
- Below 230 $\mu rad,$ strong long-range effects and lifetimes drop to below 10 h
- All trains show similar behavior (no apparent effect of IP2 and IP8)
- Beam 2 does not follow the same pattern

Losses for Beam 1 versus Beam 2

 Loss patterns confirm the previous observations, with strong losses below 230 µrad (but only in Beam 1)

Beam Loss (p)

Emittances observations

M. Crouch

- Emittance of B1 is damping especially in the horizontal plane
- Following a long range pattern for reduced crossing angles (scraping?)

Beam Profiles

S. Papadopoulou

- Profiles significantly non-Gaussian especially for beam 1 and in the vertical plane
- Analysis for evaluation and evolution of tails is ongoing

Simulations

Dynamic aperture for present LHC

DA while scanning (half) crossing angle versus intensity for β* = 40cm and 2µm emittances

 Chromaticity of 15, Maximum octupole, IP8 on

Onset of long range losses from experimental data correspond to DA of around **4 o**

Dynamic aperture for HL-LHC

Min DA; HL-LHC v1.2; Q' = 3; $I_{MO} = 0$ A

D. Pellegrini

DA while scanning (half) crossing angle versus intensity for β* = 20cm

- CC with half voltage, IP8 on
- Always quite comfortable, but:
 - No errors, low chromaticity, zero octupoles

Simulating distributions

S. Valishev

- Flat beam configuration with $\beta^* = 30/7.5$ cm, x=320 µrad, IP8=on, CC=off
- Significant beam and luminosity lifetime degradation

Evolution of profiles

S. Valishev

Significant evolution of tails but also core blow-up

BBLR Compensation with wire

BBLR=off, DA=3.2

BBLR=on, DA=5.4

Initial DA around 3σ , increased to above 5σ with wire

Simulating distributions

Lifetime recovery, no blow-up and tails

Extrapolation to HL-LHC

- Pessimistic scenario : Running the HL-LHC in conditions of DA of around 3 σ through the beginning of leveling process (quite aggressive)
- Losses of ~20% for 1st hour for bunches with 16 long ranges (around 80%) corresponding to 9.6e13 p
- For the rest of the bunches, linear drop of losses with number of long ranges down to 0 for 8 long ranges. In that case, losses correspond to extra 2.7e13p
- The total losses are estimated to 12.3e13p/h (20% of the beam besides burn-off)
- This corresponds to a lifetime of around ~10h (without burn-off)

Extrapolation to HL-LHC

- Relaxed scenario : Running the HL-LHC in 2016 conditions (DA of around 5 σ) through the beginning of leveling process (quite realistic)
- Losses of ~5% for 1st hour for bunches with 16 long ranges (around 80%) corresponding to 2.4e13 p
- For the rest of the bunches, the losses correspond to an extra **0.6e13p**
- The total losses are estimated to 3e13p/h (5% of the beam besides burn-off)
- This corresponds to a lifetime of around **45h** (without burn-off)

- Experience from **2012** shows that **long range effects** had **significant impact** on 1st h losses and emittance blow-up
- Both losses and blow-up in 1 h were brightness dependant
- Long range experiments in 2015 and 2016 showed a limit of 8.5 σ separation for triggering significant losses correlated to long-ranges
- Heavy tails and larger emittances may be more sensitive to LR effects
- DA simulations show margin for crossing angle reduction in HL-LHC (if stability is ensured for keeping low chromaticity and octupoles and impact of errors is small)
- In order to have a significant impact in lifetime (<10h) and emittance blow-up, DA has to drop to 3o
- For DA larger then **50**, and in the absence of other implications, lifetime should be comfortable (~40h)

Thanks for your attention

Additional slides

Correlation with BBLR

Fill 2710

F. Antoniou

- Observable: mean brightness of long-range encounters of strong beam times brightness of weak beam vs losses of weak beam after 1h in SB
- The bunches with **8**, **12** and **16** long-range encounters are plotted
- Correlation is observed for **Fill 2710** (early in the run) with different **slope** for different number of longrange encounters
- The **slope** is **steeper** for larger long-range encounters
 - More for B2 than B1

Correlation with BBLR

Similar trend is observed for fill
3232 (late in the run)

F. Antoniou

Steeper slopes are observed, indicating stronger effect of BBLR for the later part of the run

Correlation with BBLR

Dependence of slope on number of LR encounters for 4 different fills

F. Antoniou

- Clear trend of slope increase with the number of long range encounters observed.
- For **fill 2710** (lower brightness), weaker correlation observed
- Intuitive interpretation: towards and during collisions, brightness dependent mechanism (head-on + noise?) blows-up beam core, creating tails, leading to losses due to BBLR
- Work in progress to obtain scaling taking into account variations of bunch-by-bunch conditions (orbit, tunes, collisions in other IPs, etc.)

Y. Papaphilippou - E-lens review - 06/10/2016