LHC Power Converters And their SEE design

• **Yves Thurel [CERN]**

Acknowledgments:

- **Quentin King [CERN]**
- **Sylvie Dubettier-Grenier [CERN]**
- **Philippe Semanaz [CERN]**
- **Laurent Ceccone [CERN]**
- **Frederick Bordry [] CERN Slides from RADECS 2007 presentation :** *"The LHC Power Converters and their radiation toolerance"*

First, what to expect from a power converter engineer dealing with **Single Event Effects** design...

Let's have a look in detail and *imagine a CERN Engineer visiting a* **Power Converter Company for a S.E.E compliant power converter** for the LHC Upgrade Program...

Yves Thurel CERN TE-EPC

CERN R2E School 2-3 June 2009

CERN

al Tra

We re-designed the converter integrating a NEW S.E.E. RACK!!!

By y the way, do you provide us directly with or do the t tunnel with them? h your SEE "things" o we fill the rack in

Yves Thurel C_I TE-EPC CERN R2E School 2-3 June 2009 \mathcal{G} 6

III.

S.E.E

CERN

Rack

Don't simplify too much the S.E.E problematic. It is not simple and you have to be prepared to invest a lot of time to LEARN, TEACH what IT IS to people not used to. A good comprehension of the mechanism is the crucial 1st step.

Moral and talk construction

- **Power Converters are no w wadays integrating a lot of « high performance digita al » components: CPU RAM CPU, …**
- **Power Converter Specialists are not familiar at all** with S.E.E concepts: WHAT IT IS!!, design key rules
- **Old Fashioned Power Converters were certainly more robust with respect to S. E E.E problems**
- **A « S.E.E. » design is lon g g, costly and not always possible (Test infrastruct u ure)**
- • **Even with good intention s s, disaster is never far away for a « rad-tolerant » desi g gn, especially when using COTS components**

Same PI

Power Con nverter Design Reg garding Single Event t Effect Issues*

Yves Thurel CERN TE-EPC

C CERN R2E School 2-3 June 2009

Power Converter Overview

How does a converter look like

- \blacksquare **From some kg up to thousands of kg**
- \blacksquare **Electrical connections**
- **A cooling system (water / air)**
- \blacksquare **EXEC IS 20 IN SET IS 20 IN STARK IS 20 IN STARK IS 20 IN STARK ISLES**

^g LHC13kA-180V 2-Quadrant

8 UnitsCERN Design

Power Converter Architecture 1/3

The basics

A Modern Converter is a "black box" whhich:

- **1. transform AC Mains Power into adequate conditioned power to the load**
- **2. Is controllable over a field bus with a advanced diagnostic features**
- **3. Import and export data from and to t the controls applications and database**

The Good Question in the case of aa radiation-hard converter

How to manage the following required data processing of the converter

- **Remote control of the power convert e er (using Field Bus)**
- **Accessing external database**
	- \blacksquare **Load Parameters for tuning Digital Control loop (database import)**
	- **Example 2 Load operational Limits (current voltage)**
	- **Calibration parameters**
- **Providing modern Post Mortem Analy ze (database export)**
- **P** On line status and analog measurements

Power Converter Architecture 2/3

An adequate Answer (LHC Answer)

Architecture of the LHC power convert e er was divided in 3 parts:

- **1. Power conversion unit**
- **2. Digital Control unit**
- **3. High precision measurement unit**

This unit does not require any trimming depending on load nature No access tonature. database required

This unit concentrates all data processing, database request, import & export data data, post mortem…

 This unit can be pure analog sensor

Power Converter Architecture 3/3

Entering the different parts

Not treated here since low S.E.E impact $9 \hspace{3.1em} 13$

Digital Controller

Control Unit Overview

How does a Digital Controller look like

- \blacksquare **Digital controller**
- \blacksquare **Its PSUs**
- \blacksquare **Its chassis collecting all signals exc with power converter and field bus**

Digital Control Unit Architecture

Overview of hardware internal co m ponents layout

Main Processor: HC16

• **internal RAM not used**

DSP Co-Processor C32

• **internal RAM not used**

Memories

- **SEE Optimized**
- **Adequate Technology compared to use**
- **EDAC Corrections**

Power Cycle

- **advanced feature:**
- **- Push button**
- **- User command**
- **- Magic (long) packet on WorldFip**

Reset

- **advanced feature**
	- **- Slow Watchdog**
	- **- Fast Watchdog**
	- **- User command**

Microcontroller MCU (MC68HC16)

DSP (TMS320C32)

Digital Control Unit: Components - criteria 3/4

Digital Control Unit: Components - criteria 4/4

Digital Control Unit: SEE Impact on SRAM Example

Memory "hardware Map"

* Dual port – also visible to C32

EDAC : Error Detection AndCorrection

Digital Control Unit: Analogue High Precision Constraints

When High Precision dictates its components *Function of the card: 2 ADC channels - 1 DAC channel*

Analogue Medium Precision

Solution: Rad Tol tested COTS 16 b bits ADC exists (LHC60A FGC)

Analogue High Precision

high performance ADCs are based on Sigma Delta design and require a digital filter based on a Xilinx Spar t tan 20 FPGA containing on 200 Kbits of corruptible SRAM

S l ti oution:

Detect corruptions

- **2 channels / converter(2 DCCTs ⁺ 2 ADCs)**
- **Compare channels**

• **Detect unphysical behavio u ur in the measured signals**

Implement a Reset on analog filters to clear SEE corruptions (few 1ms)

(DAC stays frozen during res e et: transparent for converter & operation)

Implement Power cycle on analog gue card (1 ms) (DAC goes OFF, converter vol ltage goes down to 0V for ~2ms)

Yves Thurel CERN TE-EPC

CERN R2E Sch oool 2-3 June 2009

Digital Control Unit: Reset & Power Cycle Overview

Global Reset: Action taken in cas e e corruption detected

Fast Watchdog

Descri Speed & Delay

SlowWatchdog

ption CPLD checks t that software interru pt within + /-200us window Cause Software cras h h in main program due to any cause .2ms – reset is 32ms later (time to log data)

Description Simple monos t table triggered by real-time OS context switch Speed & Delay ~6s Cause Software cras h h in boot program

User

Speed & Delay immediate Cause

e Multiple corrupted bits within 32-bit long data word **detected by E D DAC protecting the SRAM**

Conse

quence HC16 Reset ++ DAC frozen=> Converter r doesn't stop

CERN R2E Sch oool 2-3 June 2009

Digital Control Unit: Reset & Power Cycle Overview

Global Power Cycle: Action taken in case corruption => Total Crash

Digital Control Unit: Radiation Test Campaigns – CERN TCC2

CERN TCC2 (1999..2002)

A first radiation Experience for a lot of us. **Big size components can be tested. Spectrum and Flux Not well known Radiation not well characterizedT.I.D tests but** *what* **about S.E.E Result s?**

SPS experimental zone: test beam Yves Thurel CERN TE-EPC

Summary of equipment tested

A lot of basic components (PSU, DCDCs…) were tested and are up to know still installed in final equipment

- **1999 WorldFiP components**
- 2000 **2000 Memory and microcontroller**
- **2001Analo g p com ponent**
- 2002 **2002 Complete power converter**
- 2002 **2002 Digital Controller only**

<u>Critical components identified...</u>

…but working ones limits and susceptibility is not really known. Not sufficient to ensure Rad -Hardcharacteristics.

Digital Control Unit: Radiation Test Campaigns - Louvain

Louvain (2003)

Small beam size so only a few components could be exposed at a time. Mono-energetic beam (60MeV protons) Well control flux and fluenceVery high flux (up to 0.7 Gray/s) Quick tests (less than 15 minutes)

Yves Thurel CERN TE-EPC

CERN R2E Sch oool 2-3 June 2009

Current Consumption increase

<u> *SEU corruption → Cross Section*</u>

Total Integrated Dose Effects

All components were measured and qualified concerning the T.I.D. effect.

Single Event Upset

Effect On Large Installation (750 LHC Tunnel Power Converters)

Processor register corruptions WILL cause crashes, but calculation shows that: S.E.U. MTBF..............1-4 week(s) $(100,000$ hours MTBF / system = 5.5 days /750 syst.) (some reset will be transparent)

Digital Control Unit: Radiation Test Campaigns – CERN CNGS

Digital Control Unit: Radiation Test - CERN CNGS Test Results

RESULTS on 2 Digital Controllers tested

- 7754 SEU counted on a FGC memories, all 100% corrected (EDAC) \rightarrow EDAC and memory corruption detection works.................
- \bullet \rightarrow 120 Gy on a FGC, and no influence seen on components (Louvain showed that critical limit was below 120 Gy). CNGS = Louvain = Very good facilities (but parasitic!!)....................
- 3-5 SEU on register C32 and HC16 (crash software if critical register) Software Update with corruption detection feature for 2009.............
- 6 Stops (slow watchdog detection) but auto-recovering resetting software
- Analog Card High Precision Digital filter corrupted many times as expected showing the corruption process and major impact Soft Update with digital filter corruption detection feature for 2009..
- 3 crashes not explained on both FGC + 1 Lethal crash for one but manualrecovering using hardware Power Cycle implemented feature each time except for final lethal crash on one FGC
	-

Digital Control Unit: Radiation Test – CERN CNGS Test Results

S Single Event Destructive Latchup

Reminder: Louvain Test: "only 13 CPLDs being tested" *g*

Single Event Effects

Actions: a 2009 CNGS Test ca ampaign on 100 Xilinx CPLDs will gives the probability o f f such a destructive event.

Yves Thurel CERN TE-EPC

C CERN R2E School 2-3 June 2009

Digital Control Unit: Radiation Test Campaigns – Prospero

Prospero (2009)

Source of Neutrons: ReactorBig size components can be tested. Mostly Mono-energetic neutron beam 1MeV peak, 10MeV maximum Fluence : 1.5x10-12 neutrons/3h

SEU should be less visible with Only 1Mev neutron. Impact on analog devices is assumed, and d d i ff f h 1M V degra dation effects o f these 1Me neutron on die is expected…

SEU corruption Î *Cross Section*

Current Consumption increase measurement

Reference Voltage source

Digital Control Unit: Radiation Test - Prospero Test Results

RESULTS on 2 Digital Controllers tested

- 1468 SEU counted on FGC external memories*, all 100% corrected EDAC and memory corruption detection works...............
- No SEU on register C32 and HC16
- . No SEU on Internal* RAM C32 and HC16
- . No corruption on Analog Card High Precision Digital filter
- Small Deviation (tolerable) on voltage references used for high precision
	- > 1-10MeV Neutron impact on Digital Controller is low......................

Comparison between CNGS and Prospero (different flux)

Prospero = 1-10Mev Neutrons **CNGS**

= Wide Energy spectrum particles

Power Part Of a Power Converter

How does a Power Part look like

- \blacksquare **Up to 4 000 components or more**
- **Up to 700 different components**
- **Analog mainly components**
- **Eassack Sensors, Optocoupers, Transistors IGBTs, MOSFET, Bi polars**
- **AC-DC PSU**
- ▉ **DC-DCs**

Power Part Of a Power Converter

Overview of hardware internal components layout

A power converter can be designed with relatively basic components excepts some inner controller like PWM or Power Transistor Drivers.

Main well known worries come from

- Diode and Power Transistors switching:

→ Voltage Over Rating is always applied (mandatory at CERN regarding the CERN mains network which can dramatically increases)

- Optocouplers often used in DCDC or isolating some signals.

→ Use radiation hard COTS components (tests)

Design shall tolerate gain degradation

Power Part: Design Approach

Design Rules applied at CERN

- \blacksquare **Minimise the number of component s** LHC60A-08V converter is made using very low number of components **compared to other types types.**
- \blacksquare **E** Use already tested op-amp, comparator, voltage reference circuits as much as **possible (radiation impact already k nnown)**
- **Pay attention on Material used: tantalum capacitor not used, insulation material critical**
- \blacksquare ■ When component is not known, test of it (PWM, IGBT Drivers)
- \blacksquare **Test new advanced / complex components and / or design some backup pure** analog (radiation tolerant components only) old fashion controller in case of **doubts on some PWM, Driver, CPLD , DCDC, AC-DC…**
- \blacksquare **E** Implement degradation known effect in design
	- MOSFET drive ±15V when possible for VGS threshold lowering with TID
	- **- Optocouplers are driven with mini m mum polarisation current and taking in account the predictable loss of gai in**

Power Part: Redesign Old Fashion High complexity Devices 1/2

<u> IGBT High Frequency Driver Example</u>

- \blacksquare **E** High Performances Drivers can be selected, simplifying a lot the design phase **of a converter.**
- ■ When some doubt exist on its S.E.E susceptibility, an alternate design can be **proposed in case of.**

Product from specialist Manu f facturer

- \blacksquare \blacksquare Was tested in TCC2.
- **Valid up to a T.I.D of 50-60 Gy.**

OR: Same Function CERN des CERN signed

 \blacksquare **E** Design based only on very basic radiation **tolerant components. (magn e etic + transistors + resistance and c capacitors). No optocoupler to transmit t h he insulated control to Transistor Gate.**

Yves Thurel CERN TE-EPC

C CERN R2E School 2-3 June 2009

Power Part: Redesign Old Fashion High complexity Devices 2/2

DC-DC

- **COTS DC-DC manufacturers aims a very high efficiency for their product (size reduction, loss reduction, competiti v ve market).**
- ■ Margins on power diodes and MOSFETs are not always respecting the rule of a **2x margin factor in voltage.**

Product from specialist Man u ufacturer

<u>• Selected ones tested in TCC2.</u>

OR: Same Function CERN d e esigned

- **Design based only on radiati on tolerant components**
- **E** Margin on power components are very **high: 200V Mosfet main swit c ch on 15V bus being switched (50V max ^x VDS)**
- **Tested successfully up to 40 0 0 Gy in TCC2**

C CERN R2E School 2-3 June 2009

Power Part: Radiation Test Campaigns – CERN TCC2

CERN TCC2 (1999..2002)

A first radiation Experience for a lot of us. **Big size components can be tested. Spectrum and Flux Not well known Radiation not well characterizedT.I.D tests but** *what* **about S.E.E Result s?**

Summary of equipment tested

A lot of basic components (PSU, DCDCs…) were tested and are up to know still installed in final equipment

- 2001 **2001 Analog component**
- 2002 **2002 Complete power converter**

Critical components identified…

…but working ones limits and susceptibility is not really known. Not s fficient to ens reufficientureRad-Hard. _____ **characteristics.**

Power Part: Radiation Test Campaigns – CERN TCC2

Some circuits Tested (integrated item s

 \blacksquare **AC-DCs PSU, Drivers, DC-DCs, DCCTs...**

) Some Components tested

 \blacksquare **MOSFETs, LEM, PWM, Optocouplers...**

Power Part: Radiation Test Campaigns – CERN CNGS

Power Part: Radiation Test - CERN CNGS Test Results

RESULTS on 2 LHC60A-08V converters tested

- Aux DCDC & PSUs chosen survived up to 100 Gy (5E¹⁰ part/cm²) All control electronics also survived same conditions → Test in TCC2 were ok regarding to test condition in CNGS...
- Since converter was always tested using a FGC Digital Controller, it was powered ON (delivering power to its load) only for some days due to Digital Controller crash.

>Tests are not complete since power components were not 'active'

→ One Power Mosfet in input power filter crashed (short circuit), even being a 1000V one. Study and other test foreseen in CNGS.....................

Test of a whole power converter is costly (loss of a complete unit) and difficult since it requires Digital Controller to work with all diagnostic being available from field bus.

 \rightarrow A crash in the digital controller then ieopardize the power part test.

A Necessity to mount a test without the Digital Controller, but high effort required to get status from the experience

Conclusions

- **People designing Power Converters s are not familiar to S.E.E phenomena since almost never facing it.**
- **Since all sensitive devices and components were placed in the digital controller, goal to achieve is more s severe on this part regarding S.E.E.**
- Nevertheless, this "sectorization" of power and control function was a **good choice since it didn't add extra a risks and work to Power Part Converter design team**
- Power part was mainly designed respecting the basic known rules, and **selecting tested devices only when more complex components or subassemblies were considered.**
- **Sometimes it is good to look backw wards how old fashion electronics were** design to re-design now fully integrated function in S.E.E sensitive items.
- $\bullet\,$ Test is a major issue when dealing with power converters. Equipments **are big size when a final test is requ uired, and some are even water cooled.**