Detector Issues for a Photon Collider

Klaus Mönig

This talk is meant as an introduction to the MDI $\gamma\gamma$ discussion. It loosely follows a list of questions posed by the MDI panel.

Physics motivation

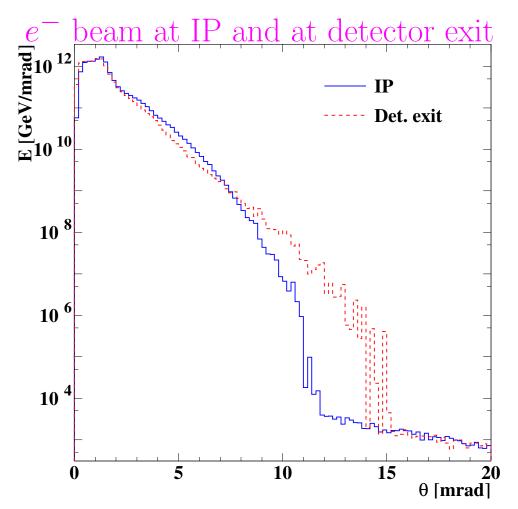
Strongest point: Higgs physics

- For a light Higgs the $H\gamma\gamma$ coupling can be measured to 2%
 - -sensitive to H coupling to heavy particles
 - unique for $\gamma\gamma$ collider
 - $-\operatorname{however}$ new physics probably below $1\,\mathrm{TeV}$ if sensitive
- Heavy SUSY Higgses
 - unique discovery window for $0.5\sqrt{s}_{ee} < m_{\rm H} < 0.8\sqrt{s}_{ee}$
 - $-H\gamma\gamma$ couplings sensitive to SUSY parameters
 - in theory good sensitivity to CP properties needs to be verified experimentally more studies needed what is possible in e⁺e⁻

Other areas

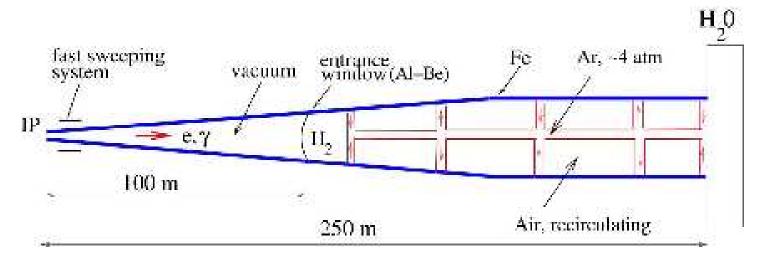
• SUSY:

- $-\, {\rm Large}$ cross section with large background
- -Can measure decay properties of SUSY partners
- However no comparative study in e^+e^- yet
- Some couplings of $t\bar{t}\gamma$ and $WW\gamma$ slightly better than in e^+e^-

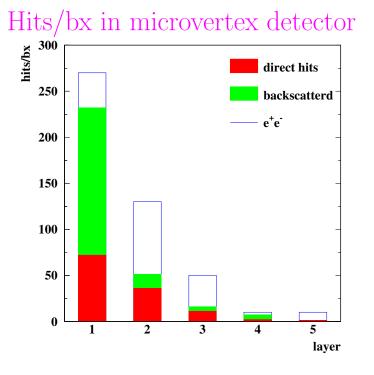

When do we want the $\gamma\gamma$ collider?

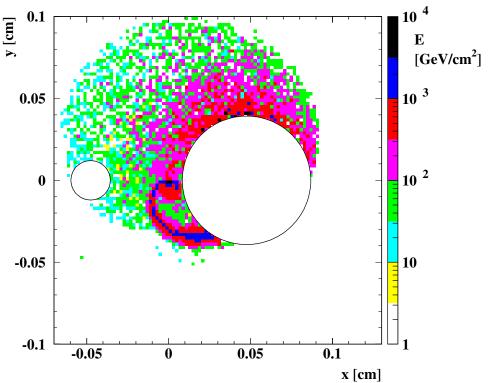
- Certainly when there are strong indication that H,A is in the discovery window
- If there are signs for CP violation in the Higgs system we may also want it
- There may well be scenarios we don't think of yet

Crossing angle issues


The disruption angle of the outgoing electron beam is $\sim~15\mathrm{mrad}$

- A "small" crossing angle is definitely not possible
- A "large" crossing angle must be ~ 10 mrad larger than in e⁺e⁻ (assuming a 2 cm hole at 2 m
- The e⁺e⁻ community will certainly not accept this
 → have to change crossing angle for γγ running


The beam dump

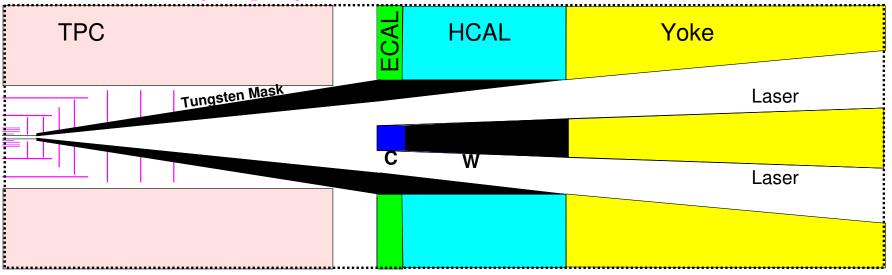

- For γγ there has to be a straight line from the IP to the dump
 meutrons can fly back into the detector this way
- $\mathcal{O}(10^{12})$ neutrons/cm²/a for a water dump, starts to be worrying
- If the same dump is used for e^+e^- and $\gamma\gamma$ this problem is solved automatically in e^+e^- if the crossing angle is changed
- \bullet The entrance window seems to be feasible
- The energy density in the core of the γ beam is to high for a water dump
 may use an Argon tank in front to widen the beam (V. Telnov)

Background

- Neutron background is critical
- Direct pair background from the
 IP is smaller than in e⁺e⁻ because
 of the anti-pinch effect
- However large potential background from backscattering at exit

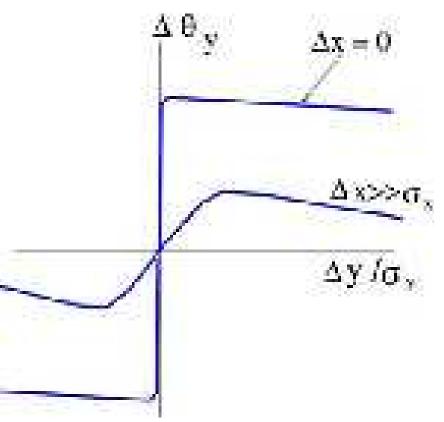
- Need a sophisticated masking system to suppress this background
- Final background at same level as in e⁺e⁻ in vertex detector and TPC

The Detector


$\gamma\gamma$ requirements

- Space for the laser pipes
- Masking system against background

Everything can be fit at $\theta < 7^{\circ}$ The tracking in the concepts starts at this angle It should be possible to use the central detector for both modes


y-z projection of the central detector

Beam-beam feedback

Beam-beam deflection is a step function because of small beam size (Is this still true with more recent parameters?)

Anyway need different algorithms (scanning) than in e^+e^- Interplay of crossing angle and solenoid shifts charge centre Scanning algorithm OK if laser stable in time (can this interfere with laser feedback loops?) Other possibility is intermediated low q bunches (N. Walker) In any case the BPMs need very large aperture

How to switch from e^+e^- to $\gamma\gamma$ and back

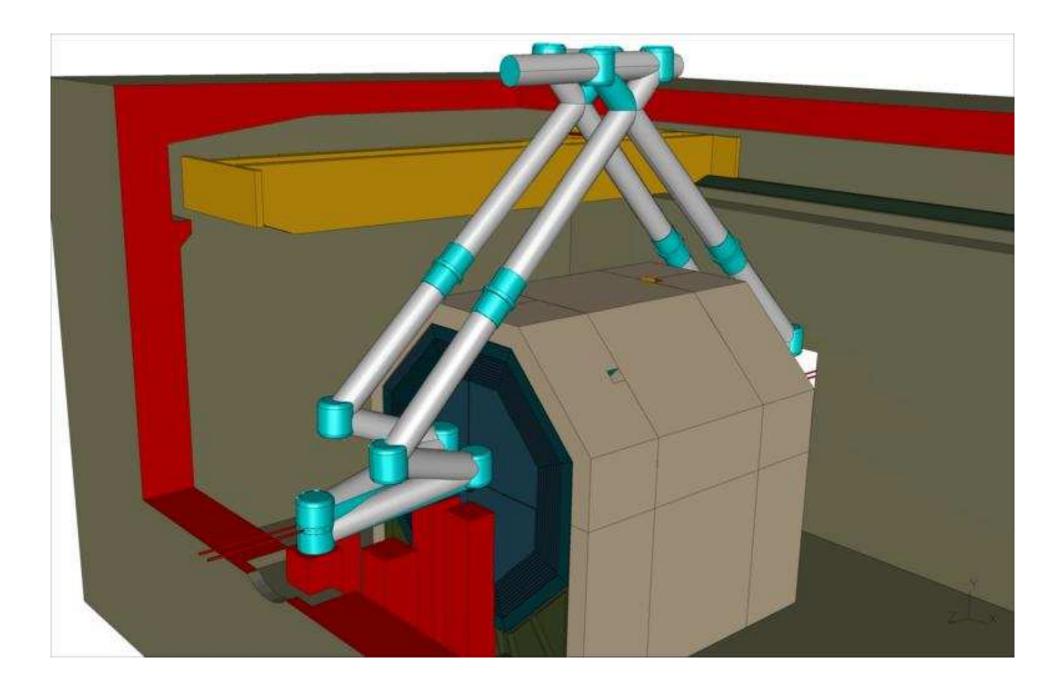
In the common IP:

- Move beam delivery system and detector to new crossing angle
- Replace low angle region of detector
- Install/remove laser system
- Commission laser without beam
- Remove/install post IP diagnostics
- Replace full extraction line

How long does this take? 1-2 years?

In the full linac

- Switch positron arm to electrons
- Return polarisation to new crossing angle
- \bullet Commission laser with beam


How long? Few months?

Switch scenarios

- Going back and forth with one IP seems unrealistic
- Two possible alternatives:
 - -2nd IP at least for $\gamma\gamma$ running (preferred)
 - $-\operatorname{run} \gamma \gamma$ at the very end of the e⁺e⁻ program

Requirements for common IP

- Transverse size of hall and tunnel prepared for crossing angle change
- Hall needs to be long enough for laser pipes
- Laser hall above the detector needed (on surface?)
- Piping above the detector constrains crane

Discussion points

- When do we decide to go to $\gamma\gamma$?
- Does it make any sense in a 1IP scenario?
- Is it realistic to go back to e^+e^- in the $\gamma\gamma$ IP?
- What is the switchover time for the IP, the linac?
- Can we really use the same detector?