Lepton distribution from top-quark

A probe of new physics and top-polarization

at

Linear Collider Workshop 2006

9-13 March, 2006

Indian Institute of Science, Bangalore, India

Ritesh K Singh¹

in collaboration with

Rohini M. Godbole² & Saurabh D. Rindani³

¹ Laboratoire de Physique Théoretique, Orsay, France; ² Centre for High Energy Physics, IISc, Bangalore, India; ³ Physical Research Laboratory, Ahmedabad, India

The mass of the top-quark is very large ($m_t \sim 175 \text{ GeV}$)

• top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.

The mass of the top-quark is very large ($m_t \sim 175 \text{ GeV}$)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5$ GeV) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.

The mass of the top-quark is very large ($m_t \sim 175 \text{ GeV}$)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5 \text{ GeV}$) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.
- the decay lepton angular distribution is insensitive to the anomalous tbW couplings, and hence a pure probe of new physics in top-production process; observed for top-pair production at e^+e^- (Rindani, Grzadkowski) as well as $\gamma\gamma$ collider (Ohkuma, Godbole).

The mass of the top-quark is very large ($m_t \sim 175 \text{ GeV}$)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5 \text{ GeV}$) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.
- the decay lepton angular distribution is insensitive to the anomalous tbW couplings, and hence a pure probe of new physics in top-production process; observed for top-pair production at e^+e^- (Rindani, Grzadkowski) as well as $\gamma\gamma$ collider (Ohkuma, Godbole).
- top-decay products provide a clean and un-contaminated probe of top-production mechanism.

The mass of the top-quark is very large ($m_t \sim 175 \text{ GeV}$)

- top-mass being close to electro-weak scale, its couplings are sensitive to EWSB. Any new physics of EWSB (or mass generation) affects top-couplings with other particles.
- its decay width ($\Gamma_t \sim 1.5 \text{ GeV}$) is much larger than the typical scale of hadronization, i.e. it decays before getting hadronized. The spin information of top-quark is translated to the decay distribution.
- the decay lepton angular distribution is insensitive to the anomalous tbW couplings, and hence a pure probe of new physics in top-production process; observed for top-pair production at e^+e^- (Rindani, Grzadkowski) as well as $\gamma\gamma$ collider (Ohkuma, Godbole).
- top-decay products provide a clean and un-contaminated probe of top-production mechanism.

We have a clean looking glass for new physics.

Anomalous *t*-decay

Anomalous tbW vertex :

$$\Gamma^{\mu} = \frac{g}{\sqrt{2}} \left[\gamma^{\mu} (f_{1L} P_L + f_{1R} P_R) - \frac{i\sigma^{\mu\nu}}{m_W} (p_t - p_b)_{\nu} (f_{2L} P_L + f_{2R} P_R) \right]$$

Anomalous t-decay

Anomalous tbW vertex :

$$\Gamma^{\mu} = \frac{g}{\sqrt{2}} \left[\gamma^{\mu} (f_{1L} P_L + f_{1R} P_R) - \frac{i\sigma^{\mu\nu}}{m_W} (p_t - p_b)_{\nu} (f_{2L} P_L + f_{2R} P_R) \right]$$

- In the SM, $f_{1L} = 1$, $f_{1R} = 0$, $f_{2L} = 0$, $f_{2R} = 0$.
- Contribution from f_{1R} , f_{2L} are proportional to m_b .

$$AB \longrightarrow \begin{array}{c} t & P_1 \dots P_{n-1} \\ & b & W^+ \\ & & l^+ \nu \end{array}$$

Lepton distribution is independent of anomalous tbW coupling if

ullet t-quark is on-shell; narrow-width approximation for t-quark,

$$AB \longrightarrow \begin{array}{c} t & P_1 \dots P_{n-1} \\ & b & W^+ \\ & & l^+ \nu \end{array}$$

- ullet t-quark is on-shell; narrow-width approximation for t-quark,
- anomalous couplings f_{1R} , f_{2R} and f_{2L} are small,

$$AB \longrightarrow \begin{array}{c} t & P_1 \dots P_{n-1} \\ & b & W^+ \\ & & l^+ \nu \end{array}$$

- ullet t-quark is on-shell; narrow-width approximation for t-quark,
- anomalous couplings f_{1R} , f_{2R} and f_{2L} are small,
- narrow-width approximation for W-boson,

$$AB \longrightarrow \begin{array}{c} t & P_1 \dots P_{n-1} \\ & b & W^+ \\ & & l^+ \nu \end{array}$$

- ullet t-quark is on-shell; narrow-width approximation for t-quark,
- ullet anomalous couplings $f_{1R},\ f_{2R}$ and f_{2L} are small,
- narrow-width approximation for W-boson,
- b-quark is mass-less,

$$AB \longrightarrow \begin{array}{c} t & P_1 \dots P_{n-1} \\ & b & W^+ \\ & & l^+ \nu \end{array}$$

- ullet t-quark is on-shell; narrow-width approximation for t-quark,
- ullet anomalous couplings $f_{1R},\ f_{2R}$ and f_{2L} are small,
- narrow-width approximation for W-boson,
- b-quark is mass-less,
- $t \to bW(\ell\nu_{\ell})$ is the only decay channel for t-quark.

Narrow-width approximation for t-quark \Rightarrow

$$\overline{|\mathcal{M}|^2} = \frac{\pi \delta(p_t^2 - m_t^2)}{\Gamma_t m_t} \sum_{\lambda, \lambda'} \rho(\lambda, \lambda') \Gamma(\lambda, \lambda')$$

where,

$$\rho(\lambda, \lambda') = M_{\rho}(\lambda) \ M_{\rho}^*(\lambda')$$
 and $\Gamma(\lambda, \lambda') = M_{\Gamma}(\lambda) \ M_{\Gamma}^*(\lambda')$.

Narrow-width approximation for t-quark \Rightarrow

$$\overline{|\mathcal{M}|^2} = \frac{\pi \delta(p_t^2 - m_t^2)}{\Gamma_t m_t} \sum_{\lambda, \lambda'} \rho(\lambda, \lambda') \Gamma(\lambda, \lambda')$$

where,

$$\rho(\lambda, \lambda') = M_{\rho}(\lambda) \ M_{\rho}^*(\lambda')$$
 and $\Gamma(\lambda, \lambda') = M_{\Gamma}(\lambda) \ M_{\Gamma}^*(\lambda')$.

$$d\sigma = \sum_{\lambda,\lambda'} \left[\frac{(2\pi)^4}{2I} \rho(\lambda,\lambda') \delta^4(k_A + k_B - p_t - \sum_{i=1}^{n-1} p_i) \frac{d^3 p_t}{2E_t(2\pi)^3} \prod_{i=1}^{n-1} \frac{d^3 p_i}{2E_i(2\pi)^3} \right] \times \left[\frac{1}{\Gamma_t} \left(\frac{(2\pi)^4}{2m_t} \Gamma(\lambda,\lambda') \delta^4(p_t - p_b - p_\nu - p_\ell) \frac{d^3 p_b}{2E_b(2\pi)^3} \frac{d^3 p_\nu}{2E_\nu(2\pi)^3} \right) \frac{d^3 p_\ell}{2E_\ell(2\pi)^3} \right].$$

Production part ($\phi_t = 0$):

$$\int \frac{d^3 p_t}{2E_t(2\pi)^3} \prod_{i=1}^{n-1} \frac{d^3 p_i}{2E_i(2\pi)^3} \frac{(2\pi)^4}{2I} \rho(\lambda, \lambda') \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right)$$

$$= d\sigma_{2\to n}(\lambda, \lambda') dE_t d\cos\theta_t.$$

Production part ($\phi_t = 0$):

$$\int \frac{d^3 p_t}{2E_t(2\pi)^3} \prod_{i=1}^{n-1} \frac{d^3 p_i}{2E_i(2\pi)^3} \frac{(2\pi)^4}{2I} \rho(\lambda, \lambda') \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i\right)\right)$$
$$= d\sigma_{2\to n}(\lambda, \lambda') dE_t d\cos\theta_t.$$

Decay part (in rest rest frame of *t*-quark) :

$$\frac{1}{\Gamma_t} \frac{(2\pi)^4}{2m_t} \int \frac{d^3 p_\ell}{2E_\ell (2\pi)^3} \frac{d^3 p_b}{2E_b (2\pi)^3} \frac{d^3 p_\nu}{2E_\nu (2\pi)^3} \Gamma(\lambda, \lambda') \delta^4(p_t - p_b - p_\nu - p_\ell)
= \frac{1}{32\Gamma_t m_t} \frac{E_\ell}{(2\pi)^4} \frac{\langle \Gamma(\lambda, \lambda') \rangle}{m_t E_\ell} dE_\ell d\Omega_\ell dp_W^2.$$

Angular brackets stands for averaging over $\phi = (\phi_b - \phi_\ell)$.

Decay density matrix

In the rest frame of *t*-quark, we have

$$\langle \Gamma(\pm, \pm) \rangle = g^4 m_t E_{\ell}^0 |\Delta_W(p_W^2)|^2 (1 \pm \cos \theta_{\ell}) \times F(E_{\ell}^0),$$

$$\langle \Gamma(\pm, \mp) \rangle = g^4 m_t E_{\ell}^0 |\Delta_W(p_W^2)|^2 (\sin \theta_{\ell} e^{\pm i\phi_{\ell}}) \times F(E_{\ell}^0).$$

where
$$\Delta_W(p_W^2) = \frac{1}{p_W^2 - m_W^2 + i\Gamma_W m_W}$$

$$F(E_{\ell}^{0}) = \left[(m_{t}^{2} - m_{b}^{2} - 2p_{t} \cdot p_{l}) \left(|f_{1L}|^{2} + \Re(f_{1L}f_{2R}^{*}) \frac{m_{t}}{m_{W}} \frac{p_{W}^{2}}{p_{t}.p_{l}} \right) - 2\Re(f_{1L}f_{2L}^{*}) \frac{m_{b}}{m_{W}} p_{W}^{2} - \Re(f_{1L}f_{1R}^{*}) \frac{m_{b} m_{t}}{p_{t}.p_{l}} p_{W}^{2} \right]$$

In general,

$$\langle \Gamma(\lambda, \lambda') \rangle = (m_t E_\ell^0) |\Delta(p_W^2)|^2 g^4 A(\lambda, \lambda') F(E_\ell^0)$$

Angular distribution of lepton

Combining production and decay part, we have

$$d\sigma = \frac{1}{32 \Gamma_t m_t (2\pi)^4} \left[\sum_{\lambda,\lambda'} d\sigma_{2\to n}(\lambda,\lambda') \times g^4 A^{c.m.}(\lambda,\lambda') \right]$$

$$\times dE_t d\cos\theta_t d\cos\theta_\ell d\phi_\ell$$

$$\times E_\ell F(E_\ell) dE_\ell dp_W^2$$

and

$$\Gamma_t \propto \int E_\ell \; F(E_\ell) \; dE_\ell \; dp_W^2$$

Contribution from anomalous tbW couplings cancels between numerator and denominator, if $t \to bW$ is the only decay channel.

 \Rightarrow Lepton angular distribution is independent of anomalous tbW interactions.

Energy distribution of lepton

The E_{ℓ} distribution (in the lab frame) depends both on

- anomalous tbW couplings \Rightarrow new physics in t-decay
- energy-angular distribution of t-quark \Rightarrow **new physics in** t-**production**

Energy distribution of lepton

The E_{ℓ} distribution (in the lab frame) depends both on

- anomalous tbW couplings \Rightarrow new physics in t-decay
- energy-angular distribution of t-quark \Rightarrow **new physics in** t-**production**

The E_{ℓ}^0 distribution (in the top-rest-frame) depends only on the possible **new physics in** t**-decay.**

$$\frac{d\sigma}{dE_{\ell}^0} \propto \int E_l^0 F(E_l^0) \ dp_W^2$$

Independent of production mechanism of t-quark!!

Polarized cross-sections:

$$\int \frac{d^3 p_t}{2E_t(2\pi)^3} \left(\prod_{i=1}^{n-1} \frac{d^3 p_i}{2E_i(2\pi)^3} \right) \frac{(2\pi)^4}{2I} \rho(\lambda, \lambda') \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right) = \sigma(\lambda, \lambda').$$

Polarized cross-sections:

$$\int \frac{d^3 p_t}{2E_t(2\pi)^3} \left(\prod_{i=1}^{n-1} \frac{d^3 p_i}{2E_i(2\pi)^3} \right) \frac{(2\pi)^4}{2I} \rho(\lambda, \lambda') \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right) = \sigma(\lambda, \lambda').$$

Total cross-section:

$$\sigma_{tot} = \sigma(+,+) + \sigma(-,-)$$

Polarized cross-sections:

$$\int \frac{d^3 p_t}{2E_t(2\pi)^3} \left(\prod_{i=1}^{n-1} \frac{d^3 p_i}{2E_i(2\pi)^3} \right) \frac{(2\pi)^4}{2I} \rho(\lambda, \lambda') \delta^4 \left(k_A + k_B - p_t - \left(\sum_{i=1}^{n-1} p_i \right) \right) = \sigma(\lambda, \lambda').$$

Total cross-section:

$$\sigma_{tot} = \sigma(+,+) + \sigma(-,-)$$

Polarization density matrix:

$$P_{t} = \frac{1}{2} \begin{pmatrix} 1 + \eta_{3} & \eta_{1} - i\eta_{2} \\ \eta_{1} + i\eta_{2} & 1 - \eta_{3} \end{pmatrix}, \qquad \frac{\eta_{3} = (\sigma(+, +) - \sigma(-, -)) / \sigma_{tot}}{\eta_{1} = (\sigma(+, -) + \sigma(-, +)) / \sigma_{tot}} i \eta_{2} = (\sigma(+, -) - \sigma(-, +)) / \sigma_{tot}}$$

Polarization through leptonic decay of *t*-quark :

$$\frac{\eta_3}{2} = \frac{\sigma(p_{\ell}.s_3 < 0) - \sigma(p_{\ell}.s_3 > 0)}{\sigma(p_{\ell}.s_3 < 0) + \sigma(p_{\ell}.s_3 > 0)}$$

$$\frac{\eta_2}{2} = \frac{\sigma(p_{\ell}.s_2 < 0) - \sigma(p_{\ell}.s_2 > 0)}{\sigma(p_{\ell}.s_2 < 0) + \sigma(p_{\ell}.s_2 > 0)}$$

$$\frac{\eta_1}{2} = \frac{\sigma(p_{\ell}.s_1 < 0) - \sigma(p_{\ell}.s_1 > 0)}{\sigma(p_{\ell}.s_1 < 0) + \sigma(p_{\ell}.s_1 > 0)}$$

$$s_i.s_j = -\delta_{ij} \qquad p_t.s_i = 0$$

For $p_t^{\mu} = E_t(1, \beta_t \sin \theta_t, 0, \beta_t \cos \theta_t)$, we have

$$s_1^{\mu} = (0, -\cos\theta_t, 0, \sin\theta_t), \ s_2^{\mu} = (0, 0, 1, 0), \ s_3^{\mu} = E_t(\beta_t, \sin\theta_t, 0, \cos\theta_t)/m_t.$$

 η_2 : transverse polarization normal to the production plane.

Simplest quantity to measure;

requires reconstruction of *t*-production plane;

 η_2 : transverse polarization normal to the production plane.

Simplest quantity to measure; requires reconstruction of *t*-production plane;

 η_1 : transverse polarization in the production plane. requires reconstruction of t-production plane and $\cos \theta_t$;

 η_2 : transverse polarization normal to the production plane. Simplest quantity to measure; requires reconstruction of t-production plane;

 η_1 : transverse polarization in the production plane. requires reconstruction of *t*-production plane and $\cos \theta_t$;

 η_3 : average helicity. requires reconstruction of t-production plane, $\cos \theta_t$ and E_t ;

 η_2 : transverse polarization normal to the production plane.

Simplest quantity to measure; requires reconstruction of *t*-production plane;

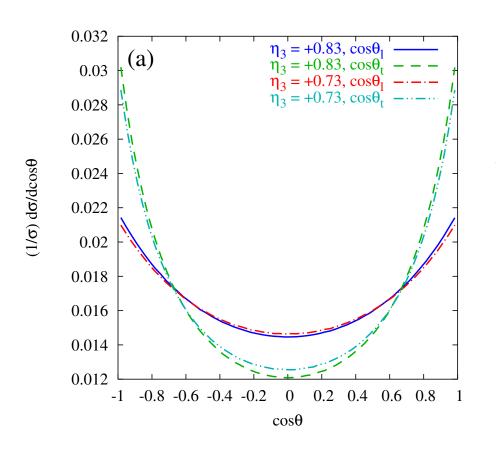
 η_1 : transverse polarization in the production plane. requires reconstruction of *t*-production plane and $\cos \theta_t$;

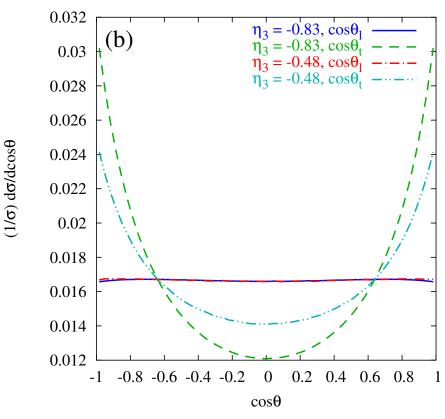
 η_3 : average helicity. requires reconstruction of t-production plane, $\cos \theta_t$ and E_t ;

Angular distribution in lab frame can be used as a qualitative measure of the t-polarization.

Polarization through angular distribution

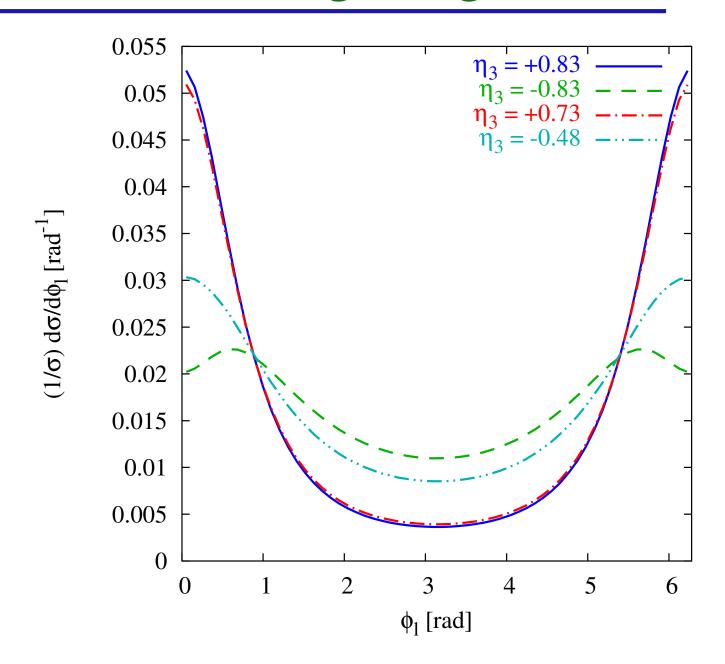
For demonstration, we chose $\gamma\gamma\to t\bar t$ process with/without Higgs exchange contribution.


$$m_{\phi}=500$$
 GeV; $\Gamma_{\phi}=2.5$ GeV, $S_{t}=0.2,\ P_{t}=0.4,\ S_{\gamma}=4.0+i\ 0.5$ and $P_{\gamma}=1.25+i\ 2.0.$


Polarized ideal photon spectrum is used.

Assumptions:

- *t*-quark is on-shell
- \bullet anomalous tbW couplings are small
- W-boson is on-shell
- b-quark is mass-less and
- $t \rightarrow bW$ is the only decay channel for t-decay


Polarization through angular distribution

$$\eta_1 = 0$$
 and $\eta_3 = 0$

Polarization through angular distribution

▶ Lepton angular distribution is a pure probe of possible new physics in any process of t-quark production, independent of possible new physics in t-decay.

- ▶ Lepton angular distribution is a pure probe of possible new physics in any process of t-quark production, independent of possible new physics in t-decay.
- Lepton energy distribution, in the *t*-rest-frame, is a pure probe of possible new physics in *t*-decay independent of top production mechanism.

- ▶ Lepton angular distribution is a pure probe of possible new physics in any process of t-quark production, independent of possible new physics in t-decay.
- Lepton energy distribution, in the *t*-rest-frame, is a pure probe of possible new physics in *t*-decay independent of top production mechanism.
- ▶ Polarization of *t*-quark can be measured (quantitatively) through angular asymmetries of decay leptons.

- ▶ Lepton angular distribution is a pure probe of possible new physics in any process of t-quark production, independent of possible new physics in t-decay.
- Lepton energy distribution, in the *t*-rest-frame, is a pure probe of possible new physics in *t*-decay independent of top production mechanism.
- Polarization of *t*-quark can be measured (quantitatively) through angular asymmetries of decay leptons.
- Angular distribution of decay lepton in the lab-frame is a good qualitative probe of *t*-polarization; quantitatively better for negative polarizations.