
Software/Simulation Summary

Mark Thomson University of Cambridge

<u>This Talk:</u>

- ★ Why, oh why ?
- ***** Frameworks/Tools
- *** PFA** where art thou ?
- *** Outlook**

• Why oh why ?

- **★** Working towards detector DCR by the end of 2006
- Desire full simulation/full reconstruction detector performance studies

Perhaps more importantly:

- ★ 3 out of 4 detector concepts choose high granularity calorimetry (i.e. high cost) for particle flow
- ★ <u>NEED</u> to be convinced that Particle Flow paradigm is correct
- For Detector DCR must try to demonstrate the PFA can be made to work for current concepts
- * Only(?) evidence that it can be made to work are "old" TESLA studies (LC-PHSM-2003-001)
- For DCR repeating/validating these studies with current detectors must be a very high priority

So PFA Matters – what matters for PFA ?

Everything !		e.g. Perfect Particle Flow (see P. Krstonosic Vienna ECFA meeting) e.g. e ⁺ e ⁻ →Z →qq at 91.2 GeV				
	Effect	σ [GeV]	σ [GeV]	σ [GeV]	σ %	
	Encot	separate	not joined	total (% / \sqrt{E})	to total	
eq	$E_{v} > 0$	0.84	0.84	0.84 (8.80%)	12.28	
To be reviewed	Cone $< 5^{\circ}$	0.73 🔸	- FORWAR	RD REGION	9.28	
To	$P_t < 0.36$	1.36	TRAC	KING	32.20	
	$\sigma_{_{HCAL}}$	1.40	HCAL RE	SOLUTION	34.12	
	$\sigma_{_{ECAL}}$	0.57	1.51	2.32(24.27%)	5.66	
	M _{neutral}	0.53	1.60	2.38(24.90%)	4.89	
	M _{charged}	0.30	1.63	<mark>2.40</mark> (25.10%)	1.57	

(assumed sub-detector resolutions: ECAL 11%/ \sqrt{E} , HCAL 50%/ \sqrt{E} +4%)

+ all mistakes made in PFA algorithm

***PFA is delicate** - it needs realistic studies: simulation + tracking + clustering

LCWS06 Bangalore 13/3/06

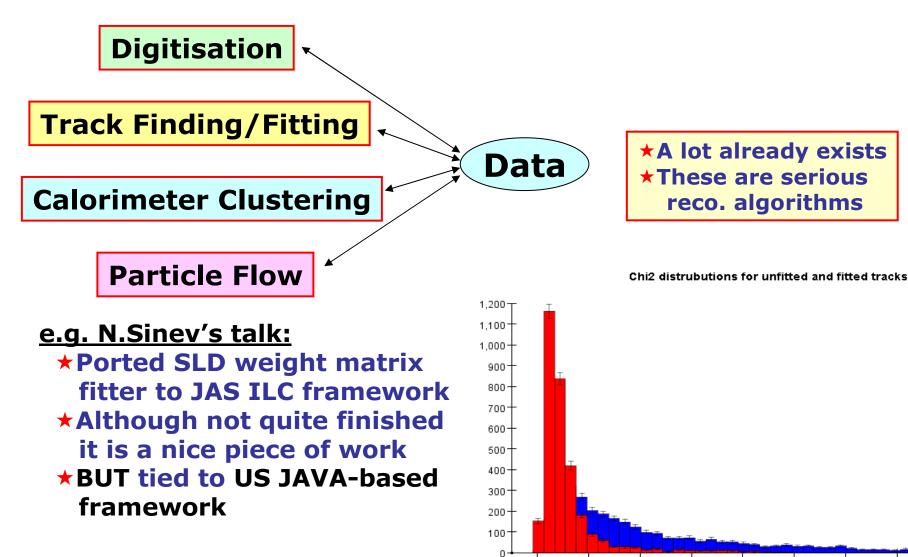
Mark Thomson

Ostimation Software FrameworkS/Tools

So where are we as of LCWS06 ?

	Description	Detector	Language	IO-Format	Region
Simdet	fast Monte Carlo	TeslaTDR	Fortran	StdHep/LCIO	EU
SGV	fast Monte Carlo	simple Geometry, flexible	Fortran	None (LCIO)	EU
Lelaps	fast Monte Carlo	SiD, flexible	C++	SIO, LCIO	US
Mokka	full simulation – Geant4	TeslaTDR, LDC, flexible	C++	ASCI, LCIO	EU
Brahms-Sim	Geant3 – full simulation	TeslaTDR	Fortran	LCIO	EU
SLIC	full simulation – Geant4	SiD, flexible	C++	LCIO	US
LCDG4	full simulation – Geant4	SiD, flexible	C++	SIO, LCIO	US
Jupiter	full simulation – Geant4	JLD (GDL)	C++	Root (LCIO)	AS
Brahms-Reco	reconstruction framework (most complete)	TeslaTDR	Fortran	LCIO	EU
Marlin	reconstruction and analysis application framework	Flexible	C++	LCIO	EU
hep.lcd	reconstruction framework	SiD (flexible)	Java	SIO	US
org.lcsim	reconstruction framework (under development)	SiD (flexible)	Java	LCIO	US
upiter-Satelite	reconstruction and analysis	JLD (GDL)	C++	Root	AS
LCCD	Conditions Data Toolkit	All	C++	MySQL, LCIO	EU
GEAR	Geometry description	Flexible	C++ (Java?)	XML	EU
LCIO	Persistency and datamodel	All	Java, C++, Fortran	-	AS,EU,US
JAS3/WIRED	Analysis Tool / Event Display	All	Java	xml,stdhep, heprep,LCIO,	US,EU

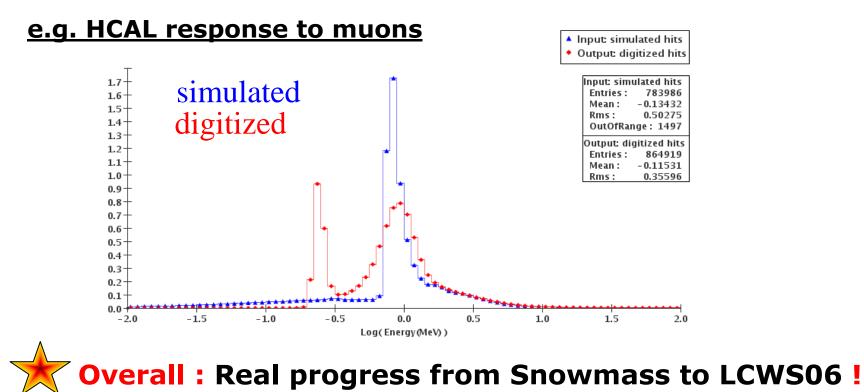
See talk of T.Behnke


	Fast Simulation	
Fu	II GEANT Simulati	on
	Reconstruction Framework	
	Geometry/Data Format+	

+reconstruction...

Much duplication of work

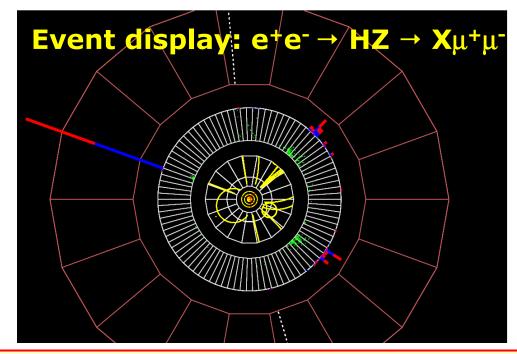
Currently Software highly tied to concepts/region
Given the lack of resources, this is an unfortunate position
Difficult to see change in short-term, but we should try....


Reconstruction Software

Another new example :DigiSim

See V.Zutshi's talk

Detailed and very general programme to turn raw MC hits into digitised hits including cross-talk/noise etc.
Both a JAVA (JAS) and C++ (MARLIN) version exist
BUT writing for 2 frameworks = extra work



IVth Concept Reconstruction C.Gatto

★ IVth concept often criticised for lack of full simulation demonstration of concept

LCWS06:

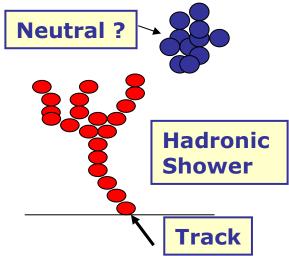
- Huge amount of progress on IVth detector concept reconstruction and simulation
- *****Based on existing, well supported tools : e.g. ROOT

*****Impressive progress : expect first performance results soon

LCWS06 Bangalore 13/3/06

Mark Thomson

B PFA where art thou ?


*****PFA paradigm central to GLD, LDC, SiD, concepts

- NOT THERE YET !
- <u>BUT:</u> Real progress being made with PFA : 63.63 % of talks in LCWS06 software session related to PFA
- Progress, but some way to go.... 6 months ? 1 year ? Longer ?

PFA challenges:

(Para)

- * Many challenges (Adam Para gave an interesting summary)
- **★ HARDEST (?) : separation of neutral and charged hadrons**

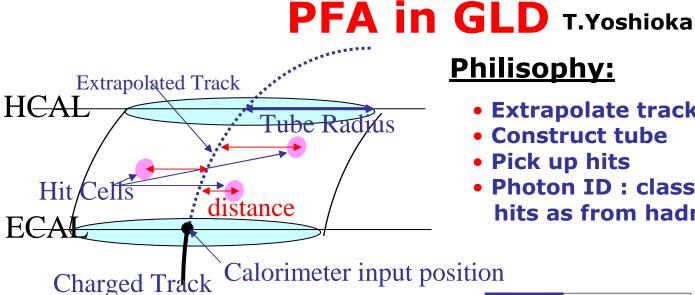
- Irreducible problem ?
- Gets worse with higher particle density i.e. higher jet energy/boost
- So far PFA mainly tested on Z
- NOT A GOOD TEST

Para Challenge: Case of bottles of (moderately good) wine for a demonstration of 0.3/JEresolution for ZH events at √s=500 GeV

Break even point

***PFA is extremely complex**

*****Can "achieve" worse performance c.f. pure calorimetric


measurement

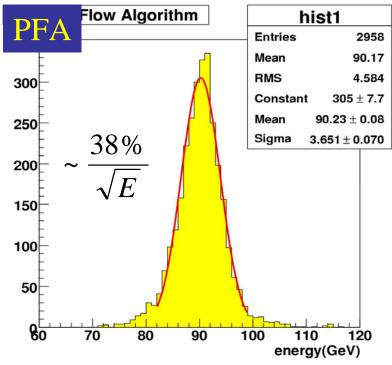
V.Morgunov

LDC00	Whole calorimeter sum		Check plots		
e+ e- into , at energy	Mean [GeV]	Sigma [GeV]	Mean [GeV]	Estimated energy resolution [GeV]	
t tbar, 1000 GeV	982.3	24.6	0.19	18.7	
W+ W-, 1000 GeV	992.6	25.5	2.7	17.4	
t tbar, 500 GeV	488.8	16.9	1.8	12.6	
W+ W-, 500 GeV	496.6	14.5	1.6	10.9	
heavy quarks, 500 GeV	495.0	14.8	-0.5	12.8	
light quarks, 500 GeV	497.9	14.9	-1.1	14.3	
t tbar, 360 GeV	356.4	14.0	5.5	10.0	
Z pole, 91.2 GeV	90.4	4.67	0.06	4.25	

- IF PFA performance worse than these values it is making things worse
- <u>VERY</u> useful sanity check

LCWS06 Bangalore 13/3/06

Philisophy:

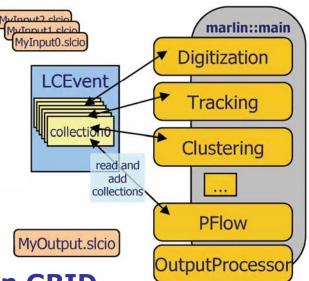

- Extrapolate track into CALO
- Construct tube
- Pick up hits
- Photon ID : classify remaining hits as from hadrons/photons

Performance:

- Z → uds (91.2 GeV)
- "Barrel region"
- add in missing energy from v
 - centres peak at 91.2 GeV
- Decent performance:

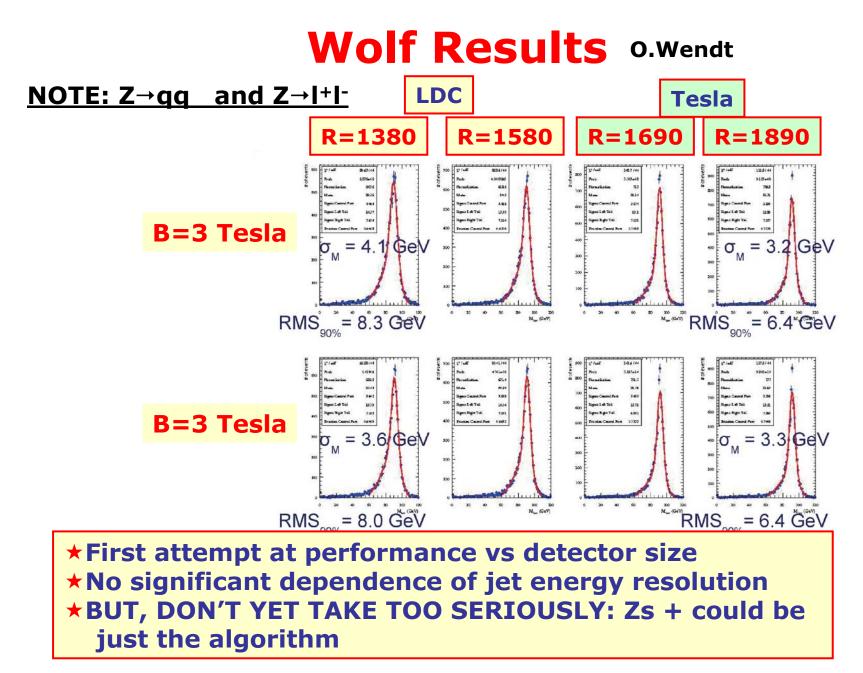
38%/√E(GeV)

BUT doesn't yet work well for higher energies

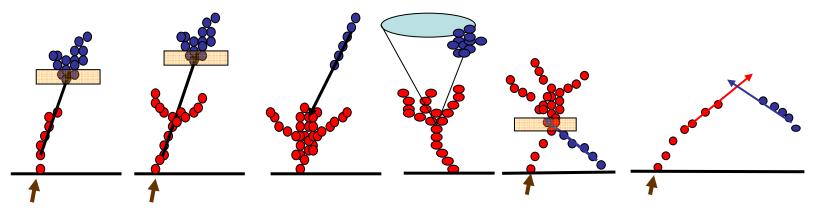

PFA in LDC

Two reasonably well developed algorithms:

- *** WOLFPFA [default]** (Raspareza et al)
- * PandroraPFA (Thomson)


Both Using MARLIN C++ framework O.Wendt

- Flexible framework
- Plug in reconstruction modules
- Almost complete reco chain exists
- Steering files drive analysis: i.e. swap different modules
 + change algorithm parameters


Simulated Events

- Large events samples generated on GRID
- 0.5 M events
 - different processes
 - different detectors
- Basis to test LDC PFA performance

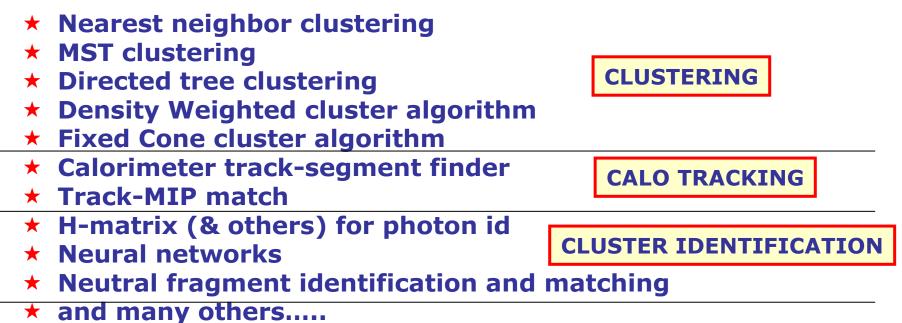
Topological approach to PFA M.Thomson


- Work from the premise that PFA is not a pure ECAL/HCAL clustering problem
- *** PFA** and calorimeter clustering performed together
- ***** Start by applying loose clustering
- * Then join clusters using topology

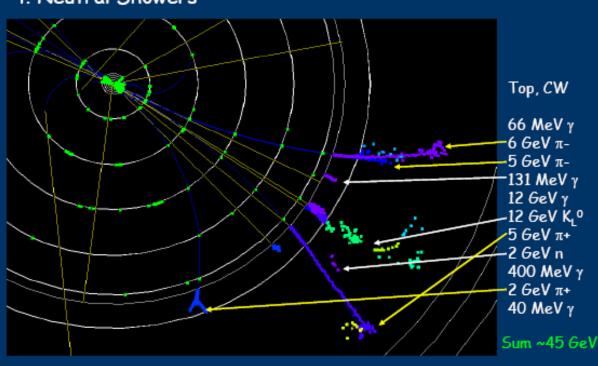
Algorithm defined by loose cluster finding
+ topological rules to join clusters

Results : Z uds events Angular dependence

+ Plot resolution vs generated polar angle of qq system



SiD : PFA studies in US


A lot of activity in US Work on 4+ distinct algorithms Still work in progress....

But many interesting ideas currently being investigated

e.g. Work at ANL:

- 3. Track/mip matches to EM, HAD showers
- 4. Neutral Showers

Currently achieve: $\sim 40\% / \sqrt{E(GeV)}$

4 Conclusions and Outlook

<u>Why ?</u>

*Sophisticated Reconstruction vital to prove ILC detector concept paradigms (PFA or IV) Software Frameworks/Tools

- ***** Lots of progress worldwide
- ***** Both on frameworks and reconstruction tools
- **★** BUT... lack of shared software/frameworks isn't helping
- ★ Lots of duplicated work !

PFA where art thou ?

- ***** Lots of activity worldwide
- ***** But not there yet (goal $30\%/\sqrt{E}$)

 $\sigma_{\rm E} / E = 34-40 \% / \sqrt{E(GeV)}$

- ***** Not bad, but this is only for Z at 91.2 GeV
- But, don't give up on PFA... good performance was achieved for Tesla TDR

Where next (personal view)?

- ★ Full detector studies by end 2006 ➡ VERY CHALLENGING !
- ***** Not impossible... not helped by lack of shared effort
- ***** Detector concepts need to collaborate more effectively

Event display:e+e→H°Z°->Xµ⁺µ⁻