A Hadron Calorimeter with Resistive Plate Chambers

José Repond Argonne National Laboratory

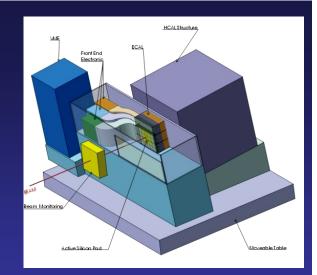
Presented by

Andy White University of Texas at Arlington

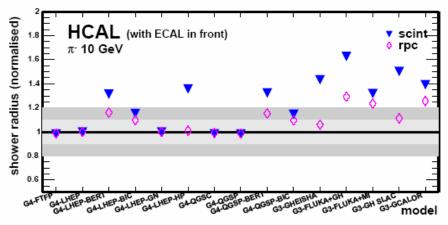
LCWS 2006, Bangalore, India, March 9 – 13, 2006

Collaborators

Institute	CALICE	Contributions to date	
Argonne	Yes	R&D on RPCs Conceptual design of electronic readout system Specification of front-end ASIC Measurements with prototype front-end board Evaluation of front-end ASIC prototype	
Boston	Yes		
Chicago	Yes	Measurement of geometrical acceptance	
Fermilab	No	Design of front-end ASIC	
lowa	Yes	Investigation of HV supplies	
IHEP Protvino	Yes	R&D on RPCs	
Regina	Yes		


HCAL R&D Goal

Prototype section (PS)


1 m³ (to contain most of hadronic showers)
40 layers with 20 mm steel plates as absorber
Lateral readout segmentation: 1 cm²
Longitudinal readout segmentation: layer-by-layer
Instrumented with Resistive Plate Chambers (RPCs) and Gas Electron Multipliers (GEMs)

Motivation for construction of PS and beam tests

Validate RPC and GEM approach (technique and physics) Validate concept of the electronic readout Measure hadronic showers with unprecedented resolution Validate MC simulation of hadronic showers Compare with results from Scintillator HCAL

Comparison of hadron shower simulation codes by G Mavromanolakis

Staged approach

R&D on RPCs

Development of conceptual design of electronic readout

Tests with cosmic rays and in particle beams

Done

Prototyping of RPCs for prototype section (PS) Prototyping of all components of electronic readout for PS

Slice test in particle beam

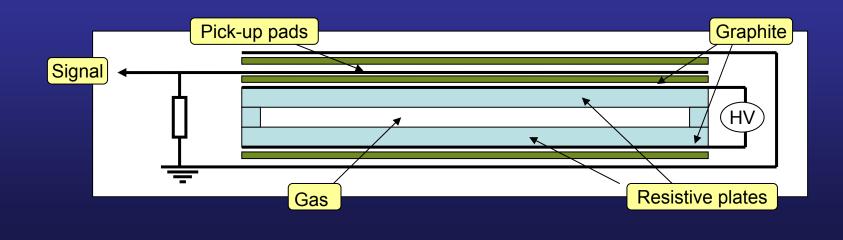
Planned for November 2006

III Construction of PS

Detailed test program in Fermilab test beam

Earliest in 2007

IV Design of Hadron Calorimeter for ILC detector


Started

Status of RPC R&D

Measurement	RPC Russia	RPC US	
Signal characterization	yes	yes	
HV dependence	yes	yes	
Single pad efficiencies	yes	yes	
Geometrical efficiency	yes	yes	
Tests with different gases	yes	yes	
Mechanical properties	?	yes	
Multipad efficiencies	yes	yes	
Hit multiplicities	yes	yes	
Noise rates	yes	yes	
Rate capability	yes	yes	
Tests in 5 T field	yes	no	
Tests in particle beams	yes	yes	
Long term tests	ongoing	ongoing	
Design of larger chamber	yes	ongoing	
Virtually all R&D completed			

Default RPC chamber designs for PS

Layer	Russia	US
Resistive layer anode	Anode readout pads	1÷50 MΩ/□
Glass thickness in [mm]	0.55	1.1
Gas gap in [mm]	1.2	1.2
Glass thickness in [mm]	0.85	1.1
Resistive layer cathode	~1 M Ω/□	1÷50 MΩ/□

Recent Tests in Fermilab's MT6 Test Beam

Signed MOU in December 2005

Dave Underwood spokesperson

Started setting-up behind beam dump in January 2006

2 RPCs with 64 channels and VME readout (events in the two chambers can be correlated)
 → Chambers based on different design (1 vs 2 glass plates)
 1 RPC with 32 channels and shift register readout (independent DAQ)
 Beam telescope with 4 scintillation counters

 \rightarrow Trigger area ~ 4 cm²

Moved into beam on February 22

Took data for ~2 x 6 hours Beam = 120 GeV/c protons 4 second spill every 2 minutes Requested variation of beam intensity between 70 and 5000 Hz/cm² Also took data with block of steel in front of RPCs

a) Safety

Experiences at MT6

Trouble getting gas system approved by safety review committee

Committee requested

- use of approved tanks
- use of gas fittings (worse) instead of water fittings (much better)
- detailed description of gas mixing procedure

Spent weeks in trying to accommodate safety committee

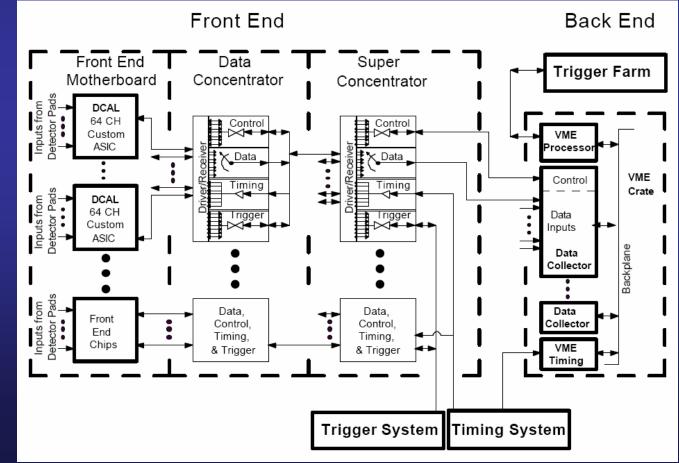
b) Environment

February was particularly cold and wet Freon liquefied in tanks and gas lines (when outside beam area) Roof leaks \rightarrow puddles, high humidity

c) Beam intensity

Easily adjusted to requested values Usually new setting established between spills (no beam losses for data taking!) → Many thanks to FNAL beam crew for excellent performance

d) Results soon


Measurement of efficiency and pad multiplicity as function of particle rate → Used fixed threshold, but ran with different high voltage settings Measurement of correlation of pad multiplicity between 2 RPCs

Electronic Readout System for Prototype Section

400,000 readout channels

Conceptual Design of Readout System

- I Front-end ASIC and motherboard
- II Data concentrator
- III Super Concentrator
- IV VME data collection
- V Trigger and timing system

Specification of system completed

of these thirds were strained in the

THE UNIVERSITY OF CHICAGO

Document

Written by Gary Drake (ANL)

Released in September 2005

Contains all details of system

Basis for design work of subsystems Counts 57 pages Conceptual Design of the Readout System for the Linear Collider Digital HCAL Prototype Detector

> John Dawson, Gary Drake, Bill Haberichter, José Repond, Dave Underwood, Lei Xia Argonne National Laboratory

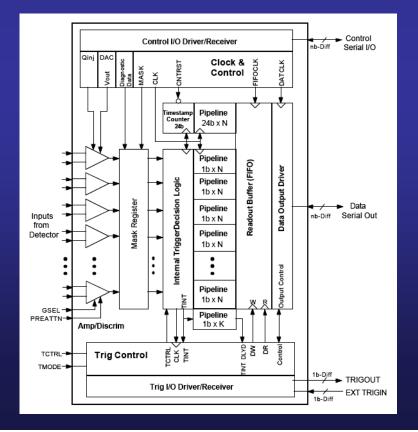
> > John Butler, Menakshi Narain Boston University

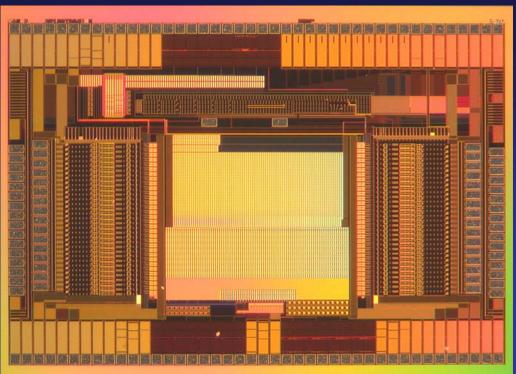
> > > Mark Oreglia University of Chicago

Jim Hoff, Abder Mekonani, Raymond Yarema Fermi National Accelerator Laboratory

> Edwin Nobeck, Yasar Onel University of Iowa

Andy White, Jaehoon Yu University of Texas - Arlington


> Version 1.13 Sept. 12, 2005


Multiplexing of readout system for PS

Component	#/chamber	#/plane	#/channels/unit	Total # of units
Planes	0.333	1	9216	40
Chambers	1	3	3072	120
DCAL ASIC	48	144	64	5760
FE motherboards	2	6	1536	240
Data concentrators	4	12	768	480
Super concentrators	0.667	2	4608	80
Data collectors	-	0.166	55,296	7
VME crates	-		387,072	1

Front-end ASIC...

- 64 inputs with choice of input gains RPCs (streamer and avalanche), GEMs... Triggerless or triggered operation
- 100 ns clock cycle
- Output: hit pattern and time stamp

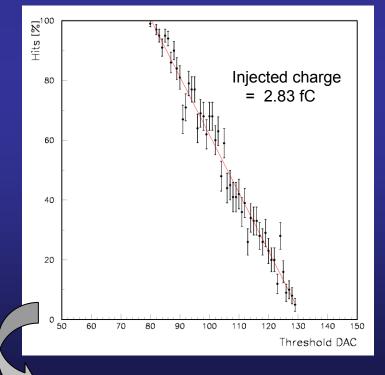
Design work at FNAL

Abderrezak Mekkaoui James Hoff Ray Yarema

Design work started in June, 2004 Prototype run submitted on March 18th 2005 40 unpackaged chips in hand Tests started...

Unpackaged chip housed on small test board

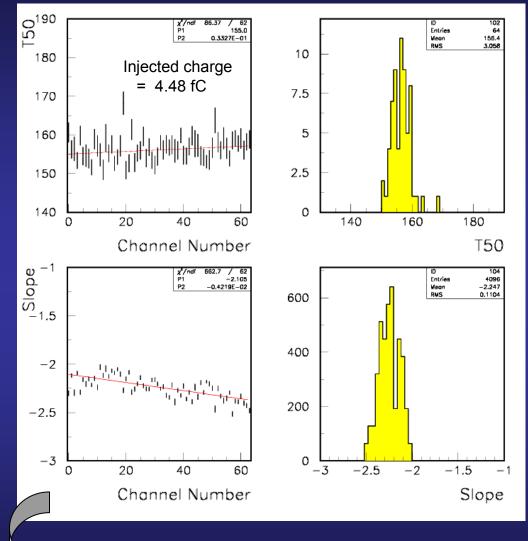
Tests of ASIC at Argonne


Built computer interface for test

Wrote software for automated tests

First Results

- a) All digital functions seem operational
- b) Detailed tests with injected charges so far look good


Threshold curve for Q = 2.83 fC

- Fit to straight line satisfactory

- Define T50 as threshold with 50% efficiency

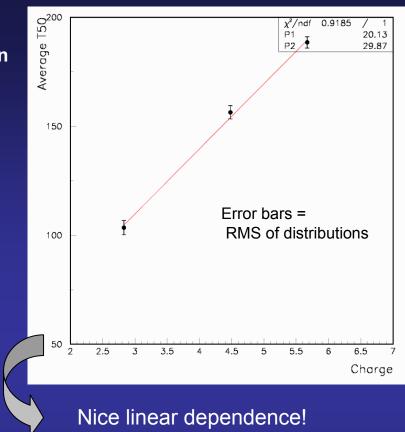
Measurements across all channels in ASIC

- T50 values uniform across all 64 channels
- Overall small spread in T50 values
- Slope of threshold curves uniform across all channels
- Small spread in slopes

Results as function of input charge

2nd Iteration of ASIC Prototype

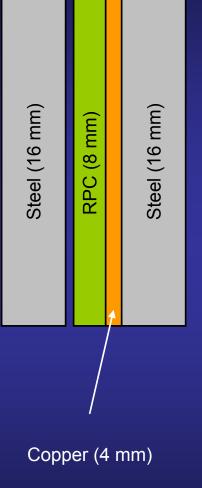
- Decrease of input sensitivity by x 10 - 20

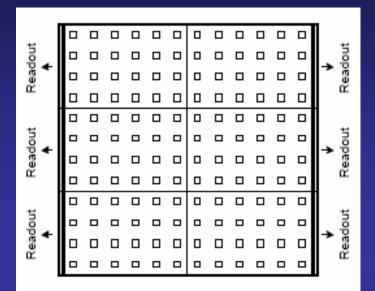

Currently upper threshold corresponds to 7.6 fC Smallest RPC signals ~ 100 fC Noise from digital lines ~ 11 fC (preliminary)

- Possibly decrease of serial line speed by x 10

Currently 10 times faster than 10 MHz clock speed

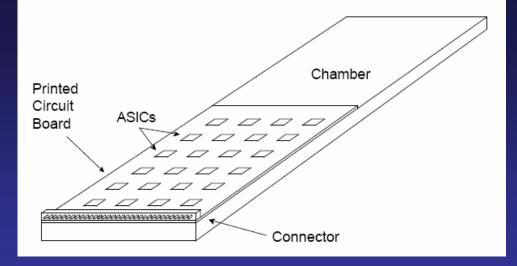
- Other minor changes needed
- Submission on May 22nd

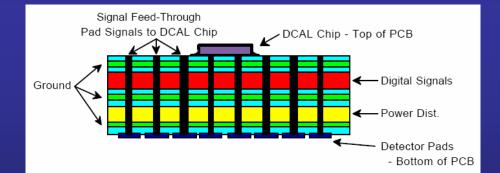



Cooling...

- Chip consumes about 300 mW (measured)
- 144 chips/plane \rightarrow 50 W/plane
- Thermal conductivity of steel not sufficient to dispose of heat
- Copper x10 better thermal conductivity than steel
- Consider replacing 4 mm support plates with copper plates
 - Cost OK Magnetic properties not relevant for test beam Properties for EM and HAD showers similar

Material	A/Z	λ _ι [cm]	X ₀ [cm]	λ _ι /Χ _ο	t _{passive} ≡ 4λ _ι [cm]	Number of layers	t _{active} / layer [mm]
Fe	56/26	16.8	1.8	9.3	67	38	8.7
Cu	64/29	15.1	1.4	10.8	42	60	9.5


Front-end boards...



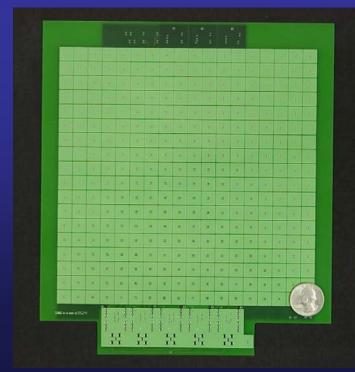
2 boards/chamber or 6 boards/plane 8 layer boards Overall thickness < 3 mm

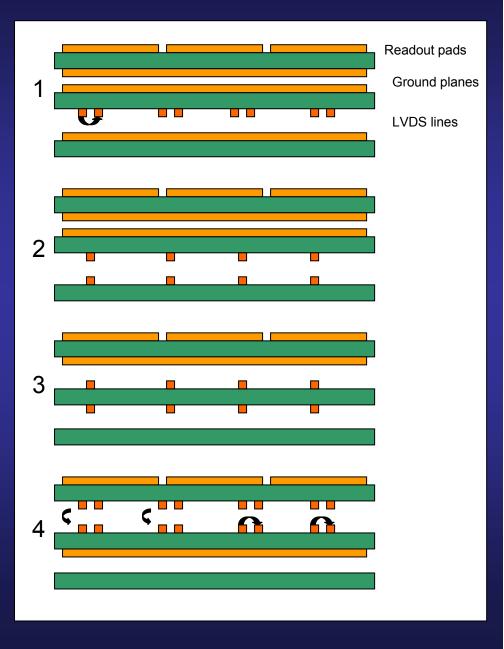
Functionality

Houses ASICs (24) Provides readout pads for RPCs Routes signals to ASICs Distributes power and ground to ASICs Distributes clocks and control signals to ASCIs Routes output signals (LVDS) to receivers

} Analog signals

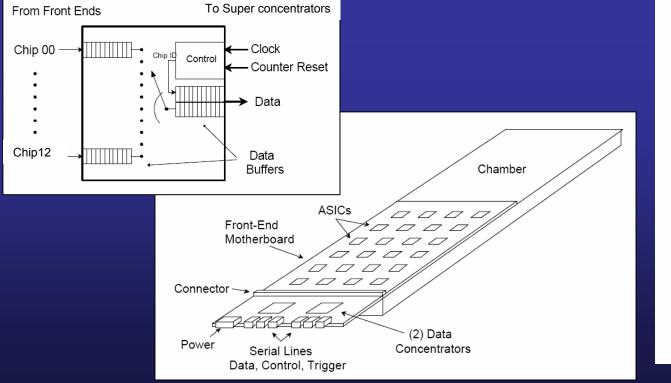
} Slow control

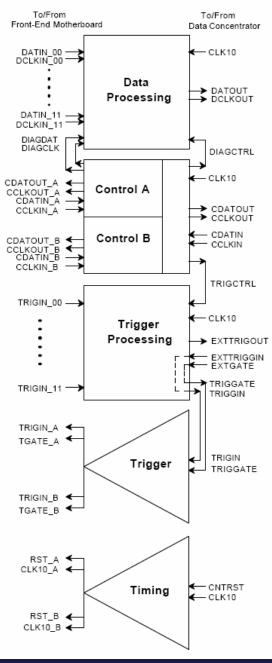

Design challenge


} Digital signals

$\textbf{Digital} \rightarrow \textbf{analog crosstalk...}$

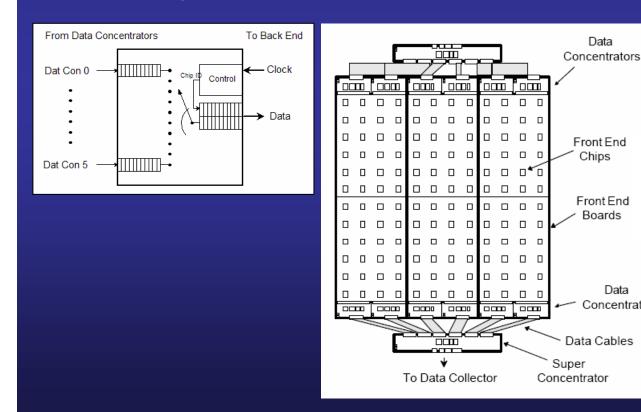
Measurements with test board

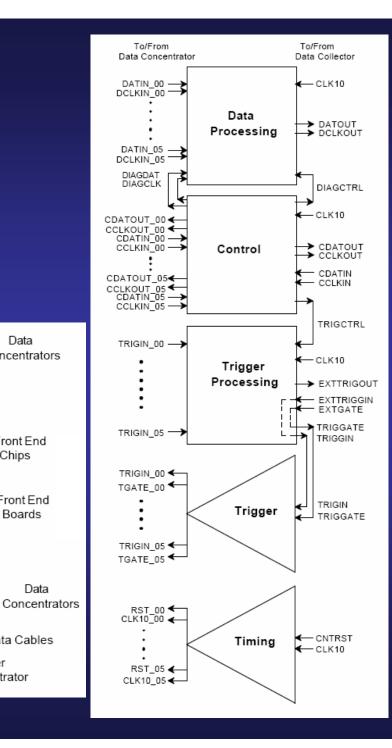

- LVDS signals routed close to pads
 - 4 different configurations
 - Each with 4 different distances to the center of the pads
- First indicate cross-talk of ~11 fC, but more tests needed...



Data concentrators...

Read out 12 ASICs (serial lines) Located on sides of section Can buffer events Distribution of trigger and timing (bus connection) Essentially FPGAs All transmissions in LVDS


Super concentrators...

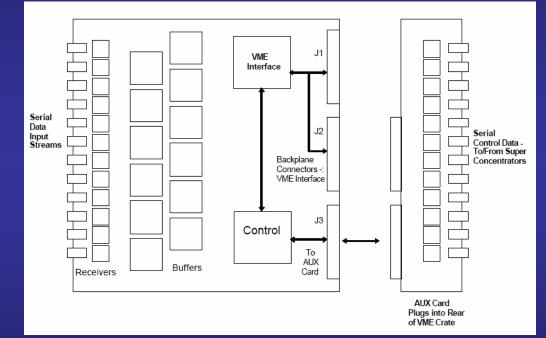

Introduced by urge to reduce cost of back-end

Reads out 6 data concentrators

Located on side of module

Similar design to data concentrator

Data


Data

Data collector...

VME based system

Each card reads out 12 super concentrators

Need only 7 cards and 1 VME crate

Investigating possibility of using CALICE-AHCAL back-end or Fermilab's test beam DAQ system

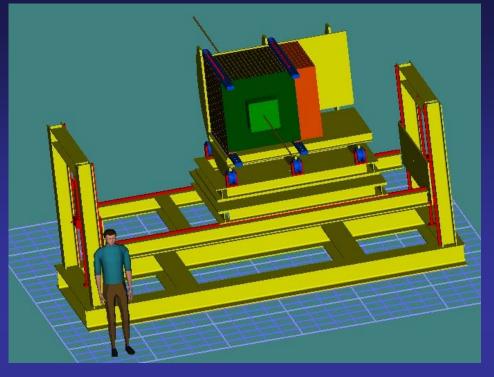
Study of rates...

Simulation of response of 1 m³ prototype section to 50 GeV π^+

Study of data rates in different components of the readout system

	1	Overall engineering and design	ANL
sks	2	ASIC engineering and design	FNAL
	3	ASIC testing Test board design Test board production Measurements	ANL FNAL
	4	Front-end PC board engineering and design prototyping and testing	ANL FNAL
	5	Data concentrator engineering and design prototyping and testing	ANL Chicago
	6	Data super concentrator engineering and design prototyping and testing	ANL Chicago
	7	Data collector engineering and design prototyping and testing	ANL Boston
	8	DAQ system: VME processor and programming	Washington
	9	Timing and trigger system engineering and design prototyping and testing	UTA
	10	High voltage system	lowa
	11	Gas mixing and distribution system	lowa
	12	Chamber construction	ANL Regina Russia

List of subtasks


Mechanical Structure for PS

CALICE builds versatile structure

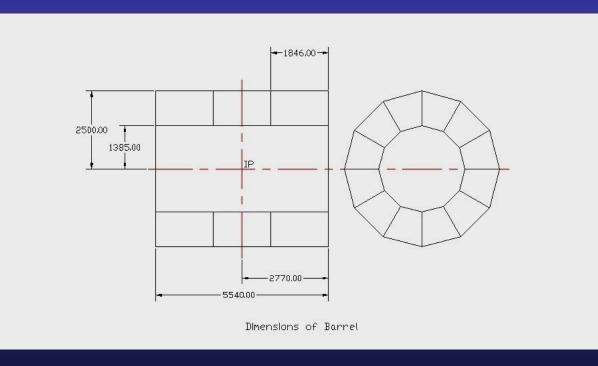
Absorber 20 mm **Steel** \rightarrow 1 X₀ sampling 40 layers \rightarrow 4 λ_1 at 90⁰

Recent simulation studies indicate that Tungsten with

Thickness of 0.7 cm \rightarrow 2 X_0 sampling 58 layers \rightarrow 4 λ_l at 90^0

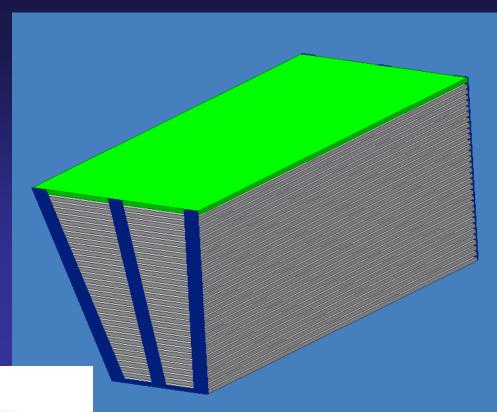
might result in better PFA performance and safe on cost (coil)

a) Do we need to test a Tungsten prototype?b) If yes, can we re-use the CALICE structure?c) What is the optimum sampling depth for W?

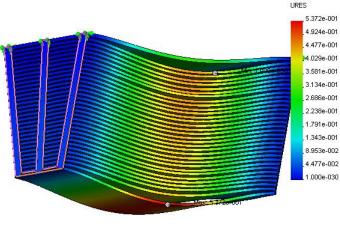

Mechanical Structure for ILC Detector

Initiated study in context of SiD concept

3 barrels in z


- to provide space for readout cables, gas supplies...
- to minimize deflections along z and for modules in 90° position

12 modules in $\boldsymbol{\phi}$



Plates held in place by 'picture frames' ↓ space for routing cables...

Gap between active areas approximately 2 cm

Cal1-Study2 :: Static Displacement Units : mm Deformation Scale 1 : 345.509

Deflections everywhere smaller than 0.53 mm

(If considering single barrel with supports only at the ends, largest deflection 44 mm)

Cost estimate for PS (M&S only)

Item	Cost	Contingency	Total	
RPC chambers	20,000	7,000	27,000	
FE-ASICs	208,000	11,600	219,600	
FE-boards	110,000	55,000	165,000	
Data concentrators	106,000	53,000	159,000	
Super concentrators	25,000	12,500	37,500	
Data collectors including crates	51,500	19,250	70,750	Probably Not needed
HV and LV supplies, gas system, cables	132,500	45,750	178,250	
Total	653,000 +	· 204,100 ÷	= 857,100	

Recent Proposals to Funding Agencies...

Agency	Institutes	Request	Award
LDRD (ANL directorate) used for manpower mostly	ANL	400,000	150,000
LCRD (DOE)	ANL, Boston, Chicago, Iowa	105,000	?
U of C Collaborative Grants	ANL, Chicago	50,000	?
US-Japan	ANL	50,000	0
MRI DHCAL prototypes	UTA	798,000	?

Time scales

FY2006	Develop and test design of larg			
	ASICs: finalize design for production			This part
	Design and prototype all subsystems			Is funded
FY2007	Perform slice test of prototype section			
	Produce chambers Only possib			
	Produce ASICs with addition			
	Produce other subsystems	funding		
FY2007 or	Move to test beam			
FY2008	Take data			