Neutrino masses and the decays of triplet Higgs in the Littlest Higgs scenario

Raghavendra Srikanth

Harish-Chandra Research Institute
Allahabad, India.

collaborators: Tao Han, Heather E. Logan and Biswarup Mukhopadhyaya

PRD 72, 053007 (2005)

Plan of the talk

- Introduction
- Neutrino masses in Littlest Higgs model
- Decays of the triplet Higgs
- Some observations

Littlet Higgs (LtH) Model

Consider a global symmetry breaking, $SU(5) \longrightarrow SO(5)$ at a scale $\Lambda \sim 4\pi f \approx$ 10 TeV.

14 Goldstone bosons (GBs) are released.

$$\Sigma_0 = \begin{pmatrix} & & \mathbf{1}_{2\times 2} \\ & 1 & \\ \mathbf{1}_{2\times 2} & \end{pmatrix}.$$
 (1

Consider a local gauge subgroup, $[SU(2) \otimes U(1)]^2$ of SU(5).

$$[SU(2)\otimes U(1)]^2\longrightarrow SU(2)_L\otimes U(1)_Y.$$

Remaining 10 GBs can be parameterised by nonlinear sigma field,

$$\Sigma = e^{i\Pi/f} \Sigma_0 e^{i\Pi^T/f}, \tag{2}$$

$$\Pi = \begin{pmatrix} \frac{h^{\dagger}}{\sqrt{2}} & \phi^{\dagger} \\ \frac{h^*}{\sqrt{2}} & \frac{h}{\sqrt{2}} \\ \phi & \frac{h^T}{\sqrt{2}} \end{pmatrix}, \tag{3}$$

where

$$h = (h^+, h^0), \quad \phi = -i \begin{pmatrix} \phi^{++} & \frac{\phi^+}{\sqrt{2}} \\ \frac{\phi^+}{\sqrt{2}} & \phi^0 \end{pmatrix}. \tag{4}$$

$$\mathcal{L}_{\Sigma} = \frac{f^2}{8} Tr |D_{\mu}\Sigma|^2, \tag{5}$$

where

$$D_{\mu}\Sigma = \partial_{\mu}\Sigma - i\sum_{j=1,2} [g_{j}w_{j\mu}^{a}(Q_{j}^{a}\Sigma + \Sigma Q_{j}^{aT}) + g_{j}'B_{j\mu}(Y_{j}\Sigma + \Sigma Y_{j}^{T})],$$
(6)

Introduce a heavy vector-like quark pair (\tilde{t}, \tilde{t}^c) .

$$\mathcal{L}_t = \frac{\lambda_1}{2} f \epsilon_{ijk} \epsilon_{xy} \chi_i \Sigma_{jx} \Sigma_{ky} u_3^c + \lambda_2 f \tilde{t} \tilde{t}^c + h.c. \tag{7}$$

where $\chi_i = (b_3, t_3, \tilde{t})$, u_3^c is an SU(2) singlet.

Coleman-Weinberg potential is

$$V_{CW} = \lambda_{\phi^2} Tr(\phi^{\dagger}\phi) + i\lambda_{h\phi h} f(h\phi^{\dagger}h^T - h^*\phi h^{\dagger})$$
$$-\mu^2 h h^{\dagger} + \lambda_{h^4} (hh^{\dagger})^2. \tag{8}$$

Electroweak symmetry breaking is triggered if $\mu^2 > 0$.

$$\langle h^0 \rangle = \frac{v}{\sqrt{2}}, \quad \langle \phi^0 \rangle = v'.$$

Minimisation conditions of the potential gives

$$v^2 = \frac{\mu^2}{\lambda_{h^4} - \frac{\lambda_{h\phi h}^2}{\lambda_{v^2}}}, \quad v' = \frac{\lambda_{h\phi h} v^2}{2\lambda_{\phi^2} f}.$$
 (9)

Neutrino masses in LtH model

Current experimental bounds on the light neutrino mass is 0.3 eV.

Let us introduce right-handed neutrinos (N_R) in to the model. Then we can write Dirac mass terms of the form

$$y_{ij}^D \overline{L}_{Li} HN_{Rj} + h.c. ag{10}$$

and also Majorana mass terms

$$M_{ij}N_{Ri}^TC^{-1}N_{Rj} + h.c.,$$
 (11)

i, j being flavour indices.

By see-saw mechanism light neutrino masses $\sim (y^D v)^2/M$.

In LtH model $M \simeq \Lambda \simeq 10$ TeV. Then in order this mass to be consistent with observations $y_{ij}^D \sim 10^{-5}$. But

$$y_{\tau}^{D} \sim 0.01.$$

This is inconsistent. One can have a lepton violating dimension-5 operator of the form

$$Y_5 \frac{(LH)^2}{\Lambda}.\tag{12}$$

The mass from this operator $\sim \frac{Y_5 v^2}{\Lambda}$. Again because $\Lambda \simeq 10$ TeV, $Y_5 \sim 10^{-10}$. There is no physics to explain the smallness of this parameter.

$$\mathcal{L}_L = iY_{ij}L_i^T \phi C^{-1}L_j + h.c. \tag{13}$$

where i, j are family indices. \mathcal{L}_L is invariant under electroweak gauge group.

We have seen that adding \mathcal{L}_L to the LtH model lagrangian does not effect heirarchy problem. Tree level majorana neutrino mass is

$$\mathcal{M}_{ij} = Y_{ij}v'. \tag{14}$$

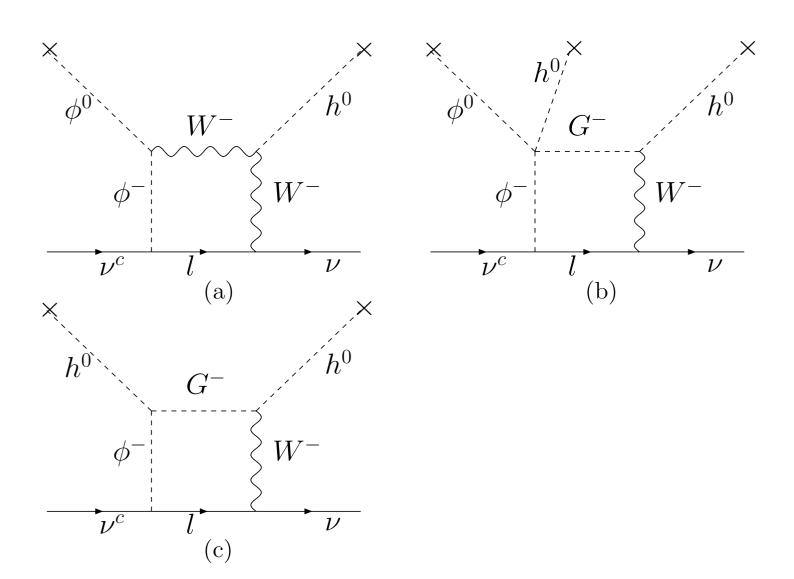
Neutrinos have mass 10^{-10} GeV.

1.
$$Y_{ij} \sim 10^{-10}, v' \sim 1 GeV$$

2.
$$Y_{ij} \sim 1$$
, $v' \sim 10^{-10} GeV$

Case(2) is better.

Radiative contributions:



Neutrino mass from Figure 1(a) is

$$\mathcal{M}_{ij} \approx (Y_{ij}v') \frac{g^4 v^2}{32\sqrt{2}\pi^2 m_{\phi}^2}.$$
 (15)

The mass term from Figure 1(b) is

$$\mathcal{M}_{ij} \approx (Y_{ij}v') \frac{g^2v^2}{24\sqrt{2}\pi^2 f^2}.$$
 (16)

The contribution from Figure 1(c) is

$$\mathcal{M}_{ij} \approx (Y_{ij}v') \frac{g^2}{32\sqrt{2}\pi^2}.$$
 (17)

W. Kilian and J. Reuter (03) and J. Lee (05) considered

$$\mathcal{L}_{LFV} = z_{\alpha\beta} \epsilon^{ij} \epsilon^{kj} f(\bar{l}_i^{\bar{c}})^{\alpha} \Sigma_{jk}^* (l_l)^{\beta} + h.c.$$
 (18)

where $\alpha, \beta = 1, 2, 3$ are flavour indices and i, j = 1, 2 are SU(5) indices. This respects $[SU(2) \otimes U(1)]^2$. The above lagrangian yield neutrino mass matrix,

$$[m_{\nu}]_{\alpha\beta} = 2z_{\alpha\beta} \left(v' + \frac{v^2}{4f} \right). \tag{19}$$

The problem with this approach is $z_{\alpha\beta} \sim 10^{-10}$.

Decays of the triplet states

The possible decays of the triplet states are

$$\phi^{++} \rightarrow \ell_i^+ \ell_j^+, \quad W^+ W^+,$$

$$\phi^+ \rightarrow \ell_i^+ \bar{\nu}_{\ell_j}, \quad t\bar{b}, \quad T\bar{b}, \quad W^+ Z, \quad W^+ h,$$

$$\phi^s \rightarrow \nu_i \nu_j, \quad \bar{\nu}_i \bar{\nu}_j, \quad t\bar{t}, \quad b\bar{b}, \quad t\bar{T} + \bar{t}T, \quad ZZ, \quad hh,$$

$$\phi^p \rightarrow \nu_i \nu_j, \quad \bar{\nu}_i \bar{\nu}_j, \quad t\bar{t}, \quad b\bar{b}, \quad t\bar{T} + \bar{t}T, \quad Zh. \quad (20)$$

We have taken $Yv'\sim 10^{-10}$ GeV. We consider the degeneracy of triplet states. ϕ^s and ϕ^p are defined by

$$\phi^0 = \phi^s + i\phi^p.$$

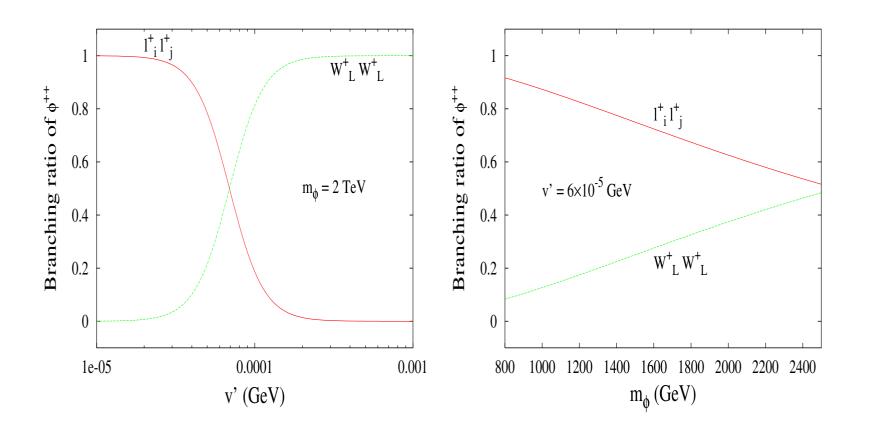


Figure 2: Branching ratios of ϕ^{++} (a) versus the triplet vev for $Yv'=10^{-10}$ GeV and $m_\phi=2$ TeV and (b) versus m_ϕ for $v'=6\times 10^{-5}$ GeV.

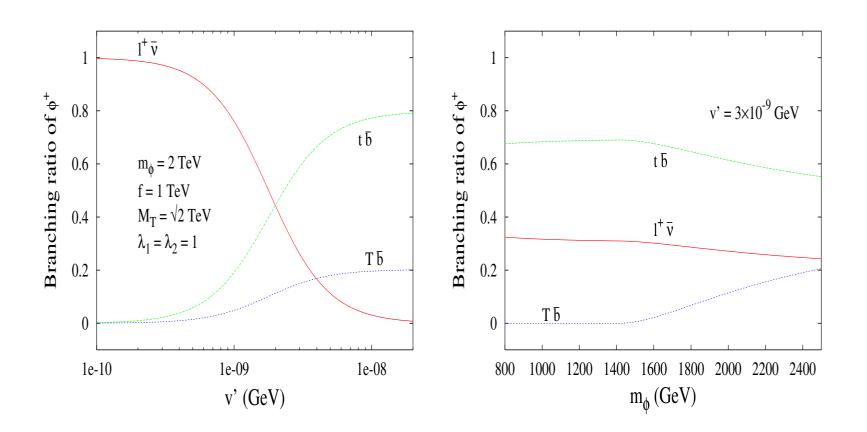


Figure 3: Branching ratio of ϕ^+ (a) versus the triplet vev for $Yv'=10^{-10}$ GeV and $m_\phi=2$ TeV and (b) versus m_ϕ for $v'=3\times 10^{-9}$ GeV.

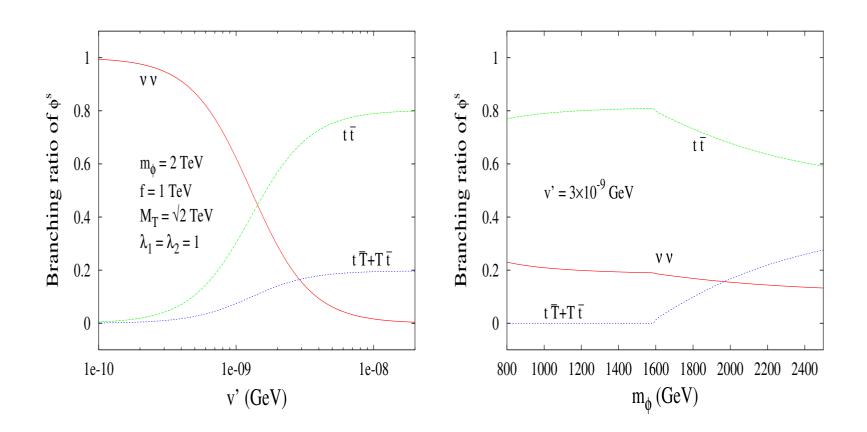


Figure 4: Branching ratios of ϕ^s (a) versus the triplet vev for $Yv'=10^{-10}$ GeV and $m_\phi=2$ TeV, and (b) versus m_ϕ for $v'=3\times 10^{-9}$ GeV.

Some observations

Decay modes like

$$\phi^{+} \rightarrow W^{+}Z, \quad W^{+}h,$$

$$\phi^{s} \rightarrow ZZ, \quad hh,$$

$$\phi^{p} \rightarrow Zh$$
(21)

are suppressed by v'/v.

This means that production of the SM Higgs from triplet decays will be unobservable in this scenario.

The end