The process $e^+e^- \rightarrow HZ$ 0000000 The process $e^+\,e^-\to\gamma Z$ 0000

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Transverse Polarization in γZ and HZ production

Saurabh D. Rindani

Physical Research Laboratory Ahmedabad

LCWS06, Bangalore

Introduction	ſ
0000	

The process $e^+\,e^-\to\gamma Z$ 0000

Outline

Introduction

- Transverse beam polarization at linear collider
- CP violation and polarization

2 The process $e^+e^- ightarrow HZ$

- Model-independent couplings for $e^+e^- \rightarrow HZ$
- Angular distribution with transverse polarization
- CP violating azimuthal asymmetry
- Sensitivity

3 The process $e^+e^- ightarrow \gamma Z$

- Model-independent couplings for $e^+e^- \rightarrow \gamma Z$
- Angular distribution with transverse polarization
- Azimuthal asymmetries
- Sensitivity

The process $e^+e^- \rightarrow \gamma Z$ 0000

TRANSVERSE BEAM POLARIZATION

- Longitudinal polarization expected to be available at linear collider
- Electron polarization: 80–90%. Positron polarization: 60%
- Possible to convert linear polarization to transverse polarization with spin rotators
- Can transverse polarization be put to use? Triple gauge couplings (Diehl, Nachtmann), Extra dimensions (T. Rizzo), Contact interactions in *tt* production (B. Ananthanarayan, S.D.R.), Chargino/neutralino production/decay (A. Bartl et al.)

The process $e^+\,e^-\to\gamma Z$ 0000

(ロ) (同) (三) (三) (三) (○) (○)

ROLE OF TRANSVERSE POLARIZATION

• Longitudinal beam polarization useful because it helps to

- Reduce background
- Increase sensitivity
- Transverse beam polarization provides azimuthal angle even for a two-particle final state
 - This could provide CP/T violating triple-product correlations
 - Even in CP conserving case, it provides additional observables through azimuthal distributions with a simpler final state
 - More information without measurement of final-state polarization
 - Hence improvement in statistics

The process $e^+e^- \rightarrow \gamma Z$ 0000

CP-odd observables and beam polarization

- No CP-violating observables possible in $e^+e^- \rightarrow f\bar{f}$ without polarization (initial or final)
- Only scalar observable non-trivial observable:

$$(\hat{p}_{\mathsf{e}^-} - \hat{p}_{\mathsf{e}^+}) \cdot (\hat{p}_{\mathsf{f}} - \hat{p}_{\overline{\mathsf{f}}})$$

which is CP even

 Without observing final-state polarization, CP-odd observables possible with longitudinal beam polarization:

$$(\vec{s}_{e^-} - \vec{s}_{e^+}) \cdot (\hat{p}_f - \hat{p}_{\overline{f}})$$

This is CPT odd – requires non-zero absorptive part (or FSI)

• With transverse beam polarization, CP odd, CPT even observable possible:

$$(\hat{p}_{e^-} - \hat{p}_{e^+}) imes (\vec{s}_{e^-} - \vec{s}_{e^+}) \cdot (\hat{p}_f - \hat{p}_{\bar{f}})$$

The process $e^+e^- \rightarrow \gamma Z$ 0000

CP-violating observables for neutral final state

- For $e^+e^- \rightarrow f + X$ where $f \equiv \overline{f}$ CP-odd observable possible without polarization:
- This is $\cos heta_f = (\hat{p}_{e^-} \hat{p}_{e^+}).\hat{p}_f$
- It is odd under CP and CPT, hence measures absorptive part
- With transverse polarization another CP-odd observable possible which is CP odd but CPT even:

 $(\hat{\rho}_{e^-} - \hat{\rho}_{e^+}).\hat{\rho}_f \left[(\vec{s}_{e^-} \times \hat{\rho}_{e^+} \cdot \hat{\rho}_f) (\vec{s}_{e^+} \cdot \hat{\rho}_f) + (\vec{s}_{e^+} \times \hat{\rho}_{e^-} \cdot \hat{\rho}_f) (\vec{s}_{e^-} \cdot \hat{\rho}_f) \right]$

• This is measured by $P_T \bar{P}_T \sin^2 \theta_f \cos \theta_f \sin 2\phi$

The process $e^+e^- \rightarrow HZ$ $\bullet \circ \circ \circ \circ \circ \circ$ The process $e^+\,e^-\to\gamma Z$ 0000

Summary

The process $e^+e^- \rightarrow HZ$

Work done in collaboration with Kumar Rao

The process $e^+e^- \rightarrow HZ$ $\bullet \circ \circ \circ \circ \circ \circ$ The process $e^+e^- \rightarrow \gamma Z$ 0000

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The process $e^+e^- \rightarrow HZ$

Work done in collaboration with Kumar Rao

Higgsstrahlung is an important production mechanism for Higgs

The process $e^+e^- \rightarrow HZ$ $\bullet \circ \circ \circ \circ \circ \circ$ The process $e^+e^- \rightarrow \gamma Z$ 0000

Summary

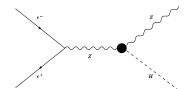
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The process $e^+e^- \rightarrow HZ$

Work done in collaboration with Kumar Rao

Higgsstrahlung is an important production mechanism for Higgs

The usual diagram for this is:



which includes SM and anomalous three-gauge boson coupling

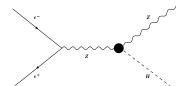
The process $e^+e^- \rightarrow HZ$ $\bullet \circ \circ \circ \circ \circ \circ$ The process $e^+e^- \rightarrow \gamma Z$ 0000 Summary

The process $e^+e^- \rightarrow HZ$

Work done in collaboration with Kumar Rao

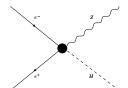
Higgsstrahlung is an important production mechanism for Higgs

The usual diagram for this is:



which includes SM and anomalous three-gauge boson coupling

We look at the general four-point coupling:



which includes the previous contribution, and additional contributions which may not have *s*-channel *Z*

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The process $e^+e^- \rightarrow HZ$ $0 \oplus 0 \oplus 0 \oplus 0$ The process $e^+e^- \rightarrow \gamma Z$ 0000

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Amplitude for $e^+e^- \rightarrow HZ$

The most general Lorentz-invariant chirality-conserving amplitude for

$$e^{-}(p_1) + e^{+}(p_2) \rightarrow Z(q,\varepsilon) + H(k)$$

is $\bar{v}(p2)\Gamma u(p1)$, where

$$\Gamma = \frac{i}{M} (V_1 + \gamma_5 A_1) \gamma \cdot \varepsilon - \frac{i}{M^3} (V_2 + \gamma_5 A_2) k \cdot \varepsilon - \frac{1}{M^3} \phi (V_3 + \gamma_5 A_3) (p_2 - p_1) \cdot \varepsilon$$

M is a scale put in to make the V_i and A_i dimensionless V_i , A_i could be functions of *s* as well as *t* (i.e. cm energy, as well as scattering angle θ

The process $e^+e^- \rightarrow HZ$

The process $e^+\,e^-\to\gamma Z$ 0000

Summary

Differential cross section

The SM differential cross section with transverse polarization P_T , \bar{P}_T of e^- , e^+ is:

$$\begin{aligned} \frac{d\sigma_T^{\text{SM}}}{d\Omega} &= \frac{\lambda^{1/2}}{64\pi^2 s^2} \left\{ F^2 \left[(g_V^2 + g_A^2) s \left[1 + \frac{|\vec{q}|^2}{2m_Z^2} \sin^2 \theta \right] \right. \\ &+ P_T \overline{P}_T (g_V^2 - g_A^2) \frac{s|\vec{q}|^2}{2m_Z^2} \sin^2 \theta \cos 2\phi \right] \right\} \\ &+ F = \frac{m_Z}{s - m_Z^2} \left(\frac{e}{2\sin \theta_W \cos \theta_W} \right)^2 \end{aligned}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

The process $e^+\,e^-\to\gamma Z$ 0000

Interference term with transverse polarization

We calculate the interference term between the SM contribution and the new physics contribution

$$\begin{aligned} \frac{d\sigma_T^{\text{int}}}{d\Omega} &= \frac{\lambda^{1/2}}{64\pi^2 s^2} \frac{2Fs}{M} \left\{ \left[(g_V \text{Re}\,V_1 - g_A \text{Re}A_1) + \frac{|\vec{q}|^2}{m_Z^2} \sin^2 \theta \left[(g_V \text{Re}\,V_1 - g_A \text{Re}A_1) \right] \right] \\ &+ P_T \overline{P}_T \left[(g_V \text{Re}\,V_1 + g_A \text{Re}A_1) \cos 2\phi - (g_V \text{Im}A_1 + g_A \text{Im}\,V_1) \sin 2\phi \right] \right] \\ &- \frac{s^{1/2} q_0 |\vec{q}|^2}{2M^2 m_Z^2} \sin^2 \theta \left[(g_V \text{Re}\,V_2 - g_A \text{Re}A_2) \right] \\ &+ P_T \overline{P}_T \left[(g_V \text{Re}\,V_2 + g_A \text{Re}A_2) \cos 2\phi - (g_V \text{Im}A_2 + g_A \text{Im}\,V_2) \sin 2\phi \right] \\ &- \frac{s^{3/2} |\vec{q}|^3}{2M^2 m_Z^2} \cos \theta \sin^2 \theta \left[(g_V \text{Im}\,V_3 - g_A \text{Im}A_3) \right] \end{aligned}$$

+ $P_T \overline{P}_T [(g_V \text{Im} V_3 + g_A \text{Im} A_3) \cos^2 \phi + (g_V \text{Re} A_3 + g_A \text{Re} V_3) \sin^2 \phi]]$

The last term (with ReV₃, ReA₃) violates CP, but not CPT

The process $e^+e^- \rightarrow \gamma Z$ 0000

CP violating terms

The term proportional to

 $P_T \overline{P}_T (g_V \text{Re}A_3 + g_A \text{Re}V_3) \cos\theta \sin^2\theta \sin 2\phi$

is odd under CP, but even under CPT

It is absent when only anomalous CP-violating VVH coupling

 $\tilde{b}_Z \varepsilon_{\alpha\beta\mu\nu} Z^{\alpha\beta} Z^{\mu\nu} H$

is included (Hagiwara & Stong; Han & Jiang; Biswal et al.)

 It is the only CP-odd, CPT-even term, and hence the only term which does not require the presence of absorptive part

The process $e^+e^- \rightarrow HZ$

The process $e^+e^- \rightarrow \gamma Z$ 0000

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

CP violating asymmetry

It can be measured by means of the asymmetry

$$egin{aligned} \mathcal{A} &= rac{1}{\sigma} [\Delta \sigma_{ ext{FB}}(0 < \phi < \pi/2) - \Delta \sigma_{ ext{FB}}(\pi/2 < \phi < \pi) \ &+ \Delta \sigma_{ ext{FB}}(\pi < \phi < 3\pi/2) - \Delta \sigma_{ ext{FB}}(3\pi/2 < \phi < 2\pi)] \end{aligned}$$

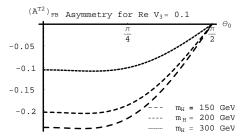
- Δσ_{FB}(φ) is the difference in the forward and backward differential cross sections of the Z for a given value of φ
- σ is the total cross section
- A can be evaluated to give

$$A = \frac{1}{\sigma} \frac{2Fs^{3/2}q^3}{M^3m_Z^2} P_T \bar{P}_T (g_A \operatorname{Re} V_3 + g_V \operatorname{Re} A_3)$$

The process $e^+e^- \rightarrow \gamma Z$ 0000 Summary

Limit on coupling from asymmetry A

The asymmetry A with a cut in forward and backward directions of θ_0 is shown as function of θ_0 :



With $\sqrt{s} = 500$ GeV, L = 500 fb⁻¹, $P_T = 0.8$, $\bar{P}_T = 0.6$, M = 500 GeV, 90% CL limit on the coupling on Re V_3 is 6×10^{-3}

- This limit is dependent on the the scale parameter M chosen – it scales as M³
- The limit is actually on the product of Re V₃ and the ZZH coupling (the latter is 1 for SM)

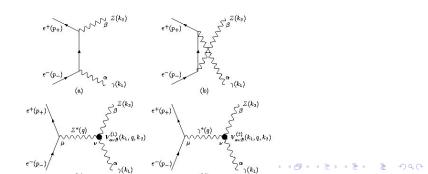
The process $e^+e^- \rightarrow HZ$ 0000000

The process $e^+e^- \rightarrow \gamma Z$

The process $e^+e^- ightarrow \gamma Z$

Work done in collaboration with B. Ananthanarayan (Phys.Lett. B, JHEP)

- This process occurs in SM through *t* and *u* channel exchange of *e*
- New physics could produce an additional contribution from anomalous γZZ or γγZ couplings



The process $e^+ \, e^- \to H\!Z$ 0000000

The process $e^+e^- \rightarrow \gamma Z$

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Triple-gauge couplings

Triple-gauge couplings are given by

$$\begin{aligned} \mathscr{L} &= e \frac{\lambda_1}{2m_Z^2} F_{\mu\nu} \left(\partial^{\mu} Z^{\lambda} \partial_{\lambda} Z^{\nu} - \partial^{\nu} Z^{\lambda} \partial_{\lambda} Z^{\mu} \right) \\ &+ \frac{e}{16c_W s_W} \frac{\lambda_2}{m_Z^2} F_{\mu\nu} F^{\nu\lambda} \left(\partial^{\mu} Z_{\lambda} + \partial_{\lambda} Z^{\mu} \right), \end{aligned} \tag{1}$$

(D. Choudhury & SDR; B. Ananthanarayan, SDR, R. Singh, & A. Bartl)
Or, through four-point e⁺e⁻γZ coupling (which includes the γZZ or γγZ contributions)

$$e^{+}(p_{+})$$

 $e^{-}(p_{-})$
 $Z(k_{2})$
 $\gamma(k_{1})$

The process $e^+e^- \rightarrow HZ$ 0000000

The process $e^+e^- \rightarrow \gamma Z$ $\bullet \circ \circ \circ$ Summary

Four-point coupling for $e^+e^- - > \gamma Z$

• Effective four-point coupling (chirality conserving) is

$$\Gamma_{\alpha\beta}^{CC} = \frac{ie^2}{4\sin\theta_W \cos\theta_W} \left\{ \frac{1}{m_Z^4} \left((v_1 + a_1\gamma_5)\gamma_\beta (2p_{-\alpha}(p_+ \cdot k_1) - 2p_{+\alpha}(p_- \cdot k_1)) + ((v_2 + a_2\gamma_5)p_{-\beta} + (v_3 + a_3\gamma_5)p_{+\beta})(\gamma_\alpha 2p_- \cdot k_1 - 2p_{-\alpha}k_1) + ((v_4 + a_4\gamma_5)p_{-\beta} + (v_5 + a_5\gamma_5)p_{+\beta})(\gamma_\alpha 2p_+ \cdot k_1 - 2p_{+\alpha}k_1) \right) + \frac{1}{m_Z^2} (v_6 + a_6\gamma_5)(\gamma_\alpha k_{1\beta} - k_1g_{\alpha\beta}) \right\}$$

$$(2)$$

- One can also write a general amplitude with chirality violating couplings
- We derive expressions for angular distributions arising from chirality conserving and chirality violating amplitudes interfering with the SM contribution
- We include longitudinal polarization or transverse polarization

The process $e^+e^- \rightarrow HZ$ 0000000 The process $e^+e^- \rightarrow \gamma Z$ $\odot \bullet \odot \odot$

Differential cross section with transverse polarization

The differential cross section for e^- and e^+ transverse polarization P_T and \bar{P}_T comes out to be:

$$\begin{pmatrix} \frac{d\sigma}{d\Omega} \end{pmatrix}_{T} = \mathscr{B}_{T} \left[\frac{1}{\sin^{2}\theta} \left(1 + \cos^{2}\theta + \frac{4\bar{s}}{(\bar{s} - 1)^{2}} - P_{T}\overline{P}_{T} \frac{g_{V}^{2} - g_{A}^{2}}{g_{V}^{2} + g_{A}^{2}} \sin^{2}\theta \cos 2\phi \right) + C_{T}^{CC} + C_{T}^{CV} \right],$$

with

$$\mathscr{B}_{T} = rac{lpha^{2}}{16\sin^{2} heta_{W}m_{W}^{2}\bar{s}}\left(1-rac{1}{\bar{s}}\right)(g_{V}^{2}+g_{A}^{2}),$$

and

$$C_T^{CC} = rac{1}{4(g_V^2 + g_A^2)} \left\{ \sum_{i=1}^6 (g_V \mathrm{Im} v_i + g_A \mathrm{Im} a_i) X_i + \right.$$

 $P_T \overline{P}_T \sum_{i=1}^{6} \left(\left(g_V \operatorname{Im} v_i - g_A \operatorname{Im} a_i \right) \cos 2\phi + \left(g_A \operatorname{Re} v_i - g_V \operatorname{Re} a_i \right) \sin 2\phi \right) Y_i \right\}$

Introduction 0000	The process $e^+e^- \rightarrow HZ$	The process $e^+e^- \rightarrow \gamma Z$ $\circ \circ \bullet \circ$	Summary
Asymmetry			

- We can use different azimuthal asymmetries to isolate different combinations of couplings.
- For the asymmetry A defined earlier,

$$egin{array}{rcl} {A} &=& \displaystylerac{1}{\sigma} \left[\Delta \sigma_{
m FB}(0 < \phi < \pi/2) - \Delta \sigma_{
m FB}(\pi/2 < \phi < \pi)
ight. \ &+ \Delta \sigma_{
m FB}(\pi < \phi < 3\pi/2) - \Delta \sigma_{
m FB}(3\pi/2 < \phi < 2\pi)
ight] \end{array}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction 0000	The process $e^+e^- ightarrow HZ$	The process $e^+e^- \rightarrow \gamma Z$ $\circ \circ \bullet \circ$	Summary
Asymmetry			

- We can use different azimuthal asymmetries to isolate different combinations of couplings.
- For the asymmetry A defined earlier,

$$egin{array}{rcl} \mathsf{A} &=& rac{1}{\sigma} \left[\Delta \sigma_{\mathrm{FB}}(0 < \phi < \pi/2) - \Delta \sigma_{\mathrm{FB}}(\pi/2 < \phi < \pi)
ight. \ &+ \Delta \sigma_{\mathrm{FB}}(\pi < \phi < 3\pi/2) - \Delta \sigma_{\mathrm{FB}}(3\pi/2 < \phi < 2\pi)
ight] \end{array}$$

we get the expression:

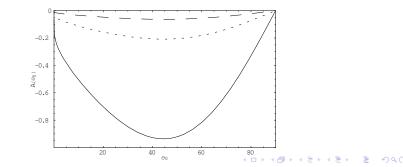
 $A(\theta_0) = \mathscr{B}' P_T \bar{P}_T$ $[g_A \{\bar{s}(\operatorname{Re} v_3 + \operatorname{Re} v_4) + 2\operatorname{Re} v_6\} - g_V \{\bar{s}(\operatorname{Re} a_3 + \operatorname{Re} a_4) + 2\operatorname{Re} a_6\}]$

 It depends on the real parts of a combination of v₃, v₄, v₆ and a₃, a₄, a₆

Introduction 0000	The process $e^+e^- ightarrow HZ$	The process $e^+e^- \rightarrow \gamma Z$	Summary
Asymmetry			

- We can use different azimuthal asymmetries to isolate different combinations of couplings.
- For the asymmetry A defined earlier,

$$egin{array}{rcl} {A} &=& rac{1}{\sigma}\left[\Delta\sigma_{
m FB}(0<\phi<\pi/2)-\Delta\sigma_{
m FB}(\pi/2<\phi<\pi)
ight. \ &+& \Delta\sigma_{
m FB}(\pi<\phi<3\pi/2)-\Delta\sigma_{
m FB}(3\pi/2<\phi<2\pi)
ight] \end{array}$$



The process $e^+e^- \rightarrow HZ$ 0000000 The process $e^+\,e^-\to\gamma Z$ $\circ\circ\circ\bullet$

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Sensitivity

We can evaluate the 90% CL limits on combinations of couplings corresponding to each asymmetry assuming the parameters

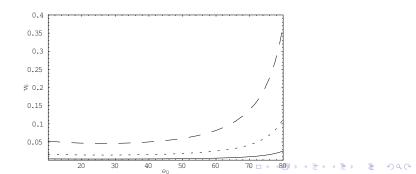
$$\sqrt{s} = 500 \,\text{GeV}, P_T = 0.8, \bar{P}_T = 0.6, \int \mathscr{L} = 500 \,\text{fb}^{-1}$$

Introduction 0000	The process $e^+e^- \rightarrow HZ$	The process $e^+e^- \rightarrow \gamma Z$ $\circ \circ \circ \bullet$
Sensitivity		

We can evaluate the 90% CL limits on combinations of couplings corresponding to each asymmetry assuming the parameters

$$\sqrt{s} = 500 \,\mathrm{GeV}, P_T = 0.8, \bar{P}_T = 0.6, \int \mathscr{L} = 500 \,\mathrm{fb}^{-1}$$

Example:



Summary

Introductio	n
0000	

The process $e^+e^- \rightarrow HZ$ 0000000 The process $e^+\,e^-\to\gamma Z$ $\circ\circ\circ\bullet$

Summary

Sensitivity

We can evaluate the 90% CL limits on combinations of couplings corresponding to each asymmetry assuming the parameters

$$\sqrt{s} = 500 \,\mathrm{GeV}, P_T = 0.8, \bar{P}_T = 0.6, \int \mathscr{L} = 500 \,\mathrm{fb}^{-1}$$

A ₁		A ₂			
Re v ₃	Re v ₄	Re v ₆	Im v ₃	Im v ₄	Im v ₆
2.1.10 ⁻⁴	$2.1 \cdot 10^{-4}$	3.1 · 10 ⁻³	3.1 · 10 ⁻³	3.1 · 10 ^{−3}	$4.6 \cdot 10^{-2}$
Re a ₃	Re a ₄	Re a ₆	Im a ₃	Im a ₃	Im <i>a</i> 6
3.1 · 10 ⁻³	3.1 · 10 ^{−3}	4.6 · 10 ⁻²	$2.1 \cdot 10^{-4}$	2.1 · 10 ⁻⁴	3.1 · 10 ⁻³

Table: Sensitivities for the asymmetries A_1 and A_2 .

Introduction 0000	The process $e^+e^- \rightarrow HZ$	The process $e^+e^- ightarrow \gamma Z$	Summary
-			

 General expressions using only Lorentz invariance were obtained for the processes e⁺e⁻ → HZ and e⁺e⁻ → γZ (assuming chirality conserving and chirality violating couplings to e⁺e⁻)

Summary

- The corresponding angular dependences were obtained to linear order in new couplings for arbitrary longitudinal and transverse beam polarizations
- Asymmetries which isolate different θ and φ combinations in the diff.c.s. were calculated
- A CP-odd CPT-even asymmetry was found which needs *e*⁺ and *e*⁻ transverse polarizations
- In the HZ case, this is present only when four-point e⁺e⁻HZ coupling is considered
- Limits of order 10⁻³ can be obtained on the dimensionless couplings at ILC