Transverse Polarization in γZ and $H Z$ production

Saurabh D. Rindani

Physical Research Laboratory
Ahmedabad
LCWS06, Bangalore

Outline

(9) Introduction

- Transverse beam polarization at linear collider
- CP violation and polarization
(2) The process $e^{+} e^{-} \rightarrow H Z$
- Model-independent couplings for $e^{+} e^{-} \rightarrow H Z$
- Angular distribution with transverse polarization
- CP violating azimuthal asymmetry
- Sensitivity
(3) The process $e^{+} e^{-} \rightarrow \gamma Z$
- Model-independent couplings for $e^{+} e^{-} \rightarrow \gamma Z$
- Angular distribution with transverse polarization
- Azimuthal asymmetries
- Sensitivity

TRANSVERSE BEAM POLARIZATION

- Longitudinal polarization expected to be available at linear collider
- Electron polarization: 80-90\%. Positron polarization: 60\%
- Possible to convert linear polarization to transverse polarization with spin rotators
- Can transverse polarization be put to use?

Triple gauge couplings (Diehl, Nachtmann), Extra dimensions (T. Rizzo), Contact interactions in $t \bar{t}$ production (B. Ananthanarayan, S.D.R.), Chargino/neutralino production/decay (A. Bartl et al.)

ROLE OF TRANSVERSE POLARIZATION

- Longitudinal beam polarization useful because it helps to
- Reduce background
- Increase sensitivity
- Transverse beam polarization provides azimuthal angle even for a two-particle final state
- This could provide CP/T violating triple-product correlations
- Even in CP conserving case, it provides additional observables through azimuthal distributions with a simpler final state
- More information without measurement of final-state polarization
- Hence improvement in statistics

CP-odd observables and beam polarization

- No CP-violating observables possible in $e^{+} e^{-} \rightarrow f \bar{f}$ without polarization (initial or final)
- Only scalar observable non-trivial observable:

$$
\left(\hat{p}_{e^{-}}-\hat{p}_{e^{+}}\right) \cdot\left(\hat{p}_{f}-\hat{p}_{\bar{f}}\right)
$$

which is CP even

- Without observing final-state polarization, CP-odd observables possible with longitudinal beam polarization:

$$
\left(\vec{s}_{e^{-}}-\vec{s}_{e^{+}}\right) \cdot\left(\hat{p}_{f}-\hat{p}_{\bar{f}}\right)
$$

This is CPT odd - requires non-zero absorptive part (or FSI)

- With transverse beam polarization, CP odd, CPT even observable possible:

$$
\left(\hat{p}_{e^{-}}-\hat{p}_{e^{+}}\right) \times\left(\vec{s}_{e^{-}}-\vec{s}_{e^{+}}\right) \cdot\left(\hat{p}_{f}-\hat{p}_{\bar{f}}\right)
$$

CP-violating observables for neutral final state

- For $e^{+} e^{-} \rightarrow f+X$ where $f \equiv \bar{f}$

CP-odd observable possible without polarization:

- This is $\cos \theta_{f}=\left(\hat{p}_{e^{-}}-\hat{p}_{e^{+}}\right) \cdot \hat{p}_{f}$
- It is odd under CP and CPT, hence measures absorptive part
- With transverse polarization another CP-odd observable possible which is CP odd but CPT even:
$\left(\hat{p}_{e^{-}}-\hat{p}_{e^{+}}\right) \cdot \hat{p}_{f}\left[\left(\vec{s}_{e^{-}} \times \hat{p}_{e^{+}} \cdot \hat{p}_{f}\right)\left(\vec{s}_{e^{+}} \cdot \hat{p}_{f}\right)+\left(\vec{s}_{e^{+}} \times \hat{p}_{e^{-}} \cdot \hat{p}_{f}\right)\left(\vec{s}_{e^{-}} \cdot \hat{p}_{f}\right)\right]$
- This is measured by $P_{T} \bar{P}_{T} \sin ^{2} \theta_{f} \cos \theta_{f} \sin 2 \phi$

The process $e^{+} e^{-} \rightarrow H Z$

Work done in collaboration with Kumar Rao

The process $e^{+} e^{-} \rightarrow H Z$

Work done in collaboration with Kumar Rao

Higgsstrahlung is an important production mechanism for Higgs

The process $e^{+} e^{-} \rightarrow H Z$

Work done in collaboration with Kumar Rao

Higgsstrahlung is an important production mechanism for Higgs
The usual diagram for this is:

which includes SM and anomalous three-gauge boson coupling

The process $e^{+} e^{-} \rightarrow H Z$

Work done in collaboration with Kumar Rao

Higgsstrahlung is an important production mechanism for Higgs

The usual diagram for this is:
We look at the general four-point coupling:

which includes SM and anomalous three-gauge boson coupling

which includes the previous contribution, and additional contributions which may not have s-channel Z

Amplitude for $e^{+} e^{-} \rightarrow H Z$

The most general Lorentz-invariant chirality-conserving amplitude for

$$
e^{-}\left(p_{1}\right)+e^{+}\left(p_{2}\right) \rightarrow Z(q, \varepsilon)+H(k)
$$

is $\bar{v}(p 2) \Gamma u(p 1)$, where

$$
\Gamma=\frac{i}{M}\left(V_{1}+\gamma_{5} A_{1}\right) \gamma \cdot \varepsilon-\frac{i}{M^{3}}\left(V_{2}+\gamma_{5} A_{2}\right) k \cdot \varepsilon-\frac{1}{M^{3}} \phi\left(V_{3}+\gamma_{5} A_{3}\right)\left(p_{2}-p_{1}\right) \cdot \varepsilon
$$

M is a scale put in to make the V_{i} and A_{i} dimensionless V_{i}, A_{i} could be functions of s as well as t (i.e. cm energy, as well as scattering angle θ

Differential cross section

The SM differential cross section with transverse polarization P_{T}, \bar{P}_{T} of e^{-}, e^{+}is:

$$
\begin{gathered}
\frac{d \sigma_{T}^{\mathrm{SM}}}{d \Omega}=\frac{\lambda^{1 / 2}}{64 \pi^{2} s^{2}}\left\{F ^ { 2 } \left[\left(g_{V}^{2}+g_{A}^{2}\right) s\left[1+\frac{|\vec{q}|^{2}}{2 m_{Z}^{2}} \sin ^{2} \theta\right]\right.\right. \\
\left.\left.+P_{T} \bar{P}_{T}\left(g_{V}^{2}-g_{A}^{2}\right) \frac{s|\vec{q}|^{2}}{2 m_{Z}^{2}} \sin ^{2} \theta \cos 2 \phi\right]\right\} \\
F=\frac{m_{Z}}{s-m_{Z}^{2}}\left(\frac{e}{2 \sin \theta_{W} \cos \theta_{W}}\right)^{2}
\end{gathered}
$$

Interference term with transverse polarization

We calculate the interference term between the SM contribution and the new physics contribution

$$
\begin{aligned}
\frac{d \sigma_{T}^{\mathrm{int}}}{d \Omega} & =\frac{\lambda^{1 / 2}}{64 \pi^{2} s^{2}} \frac{2 F s}{M}\left\{\left[\left(g_{V} \operatorname{Re} V_{1}-g_{A} \operatorname{Re} A_{1}\right)+\frac{|\vec{q}|^{2}}{m_{Z}^{2}} \sin ^{2} \theta\left[\left(g_{V} \operatorname{Re} V_{1}-g_{A} \operatorname{Re} A_{1}\right)\right.\right.\right. \\
& \left.\left.+P_{T} \bar{P}_{T}\left[\left(g_{V} \operatorname{Re} V_{1}+g_{A} \operatorname{Re} A_{1}\right) \cos 2 \phi-\left(g_{V} \operatorname{Im} A_{1}+g_{A} \operatorname{Im} V_{1}\right) \sin 2 \phi\right]\right]\right] \\
& -\frac{s^{1 / 2} q_{0}|\vec{q}|^{2}}{2 M^{2} m_{Z}^{2}} \sin ^{2} \theta\left[\left(g_{V} \operatorname{Re} V_{2}-g_{A} \operatorname{Re} A_{2}\right)\right. \\
& \left.+P_{T} \bar{P}_{T}\left[\left(g_{V} \operatorname{Re} V_{2}+g_{A} \operatorname{Re} A_{2}\right) \cos 2 \phi-\left(g_{V} \operatorname{Im} A_{2}+g_{A} \operatorname{Im} V_{2}\right) \sin 2 \phi\right]\right] \\
& -\frac{s^{3 / 2}|\vec{q}|^{3}}{2 M^{2} m_{Z}^{2}} \cos \theta \sin ^{2} \theta\left[\left(g_{V} \operatorname{Im} V_{3}-g_{A} \operatorname{Im} A_{3}\right)\right. \\
& \left.\left.+P_{T} \bar{P}_{T}\left[\left(g_{V} \operatorname{Im} V_{3}+g_{A} \operatorname{Im} A_{3}\right) \cos 2 \phi+\left(g_{V} \operatorname{Re} A_{3}+g_{A} \operatorname{Re} V_{3}\right) \sin 2 \phi\right]\right]\right\}
\end{aligned}
$$

The last term (with $\operatorname{Re} V_{3}, \operatorname{Re} A_{3}$) violates CP, but not CPT

CP violating terms

- The term proportional to

$$
P_{T} \bar{P}_{T}\left(g_{V} \operatorname{Re} A_{3}+g_{A} \operatorname{Re} V_{3}\right) \cos \theta \sin ^{2} \theta \sin 2 \phi
$$

is odd under CP, but even under CPT

- It is absent when only anomalous CP-violating VVH coupling

$$
\tilde{b}_{Z} \varepsilon_{\alpha \beta \mu v} Z^{\alpha \beta} Z^{\mu v} H
$$

is included (Hagiwara \& Stong; Han \& Jiang; Biswal et al.)

- It is the only CP-odd, CPT-even term, and hence the only term which does not require the presence of absorptive part

CP violating asymmetry

- It can be measured by means of the asymmetry

$$
\begin{aligned}
A & =\frac{1}{\sigma}\left[\Delta \sigma_{\mathrm{FB}}(0<\phi<\pi / 2)-\Delta \sigma_{\mathrm{FB}}(\pi / 2<\phi<\pi)\right. \\
& \left.+\Delta \sigma_{\mathrm{FB}}(\pi<\phi<3 \pi / 2)-\Delta \sigma_{\mathrm{FB}}(3 \pi / 2<\phi<2 \pi)\right]
\end{aligned}
$$

- $\Delta \sigma_{\mathrm{FB}}(\phi)$ is the difference in the forward and backward differential cross sections of the Z for a given value of ϕ
- σ is the total cross section
- A can be evaluated to give

$$
A=\frac{1}{\sigma} \frac{2 F s^{3 / 2} q^{3}}{M^{3} m_{Z}^{2}} P_{T} \bar{P}_{T}\left(g_{A} \operatorname{Re} V_{3}+g_{V} \operatorname{Re} A_{3}\right)
$$

Limit on coupling from asymmetry A

The asymmetry A with a cut in forward and backward directions of θ_{0} is shown as function of θ_{0} :

With $\sqrt{s}=500 \mathrm{GeV}, L=500 \mathrm{fb}^{-1}, P_{T}=0.8, \bar{P}_{T}=0.6$, $M=500 \mathrm{GeV}, 90 \% \mathrm{CL}$ limit on the coupling on $\mathrm{Re} V_{3}$ is 6×10^{-3}

- This limit is dependent on the the scale parameter M chosen - it scales as M^{3}
- The limit is actually on the product of $\operatorname{Re} V_{3}$ and the $Z Z H$ coupling (the latter is 1 for SM)

The process $e^{+} e^{-} \rightarrow \gamma Z$

Work done in collaboration with B. Ananthanarayan (Phys.Lett.
B, JHEP)

- This process occurs in SM through t and u channel exchange of e
- New physics could produce an additional contribution from anomalous $\gamma Z Z$ or $\gamma \gamma Z$ couplings

(b)

Triple-gauge couplings

- Triple-gauge couplings are given by

$$
\begin{align*}
\mathscr{L}= & e \frac{\lambda_{1}}{2 m_{Z}^{2}} F_{\mu v}\left(\partial^{\mu} Z^{\lambda} \partial_{\lambda} Z^{v}-\partial^{v} Z^{\lambda} \partial_{\lambda} Z^{\mu}\right) \tag{1}\\
& +\frac{e}{16 c_{W} s_{W}} \frac{\lambda_{2}}{m_{Z}^{2}} F_{\mu v} F^{v \lambda}\left(\partial^{\mu} Z_{\lambda}+\partial_{\lambda} Z^{\mu}\right)
\end{align*}
$$

(D. Choudhury \& SDR; B. Ananthanarayan, SDR, R. Singh, \& A. Bartl)

- Or, through four-point $e^{+} e^{-} \gamma Z$ coupling
(which includes the $\gamma Z Z$ or $\gamma \gamma Z$ contributions)

Four-point coupling for $e^{+} e^{-}->\gamma Z$

- Effective four-point coupling (chirality conserving) is

$$
\begin{gather*}
\Gamma_{\alpha \beta}^{C c}=\frac{i e^{2}}{4 \sin \theta_{W} \cos \theta_{W}}\left\{\frac { 1 } { m _ { Z } ^ { 4 } } \left(\left(v_{1}+a_{1} \gamma_{5}\right) \gamma_{\beta}\left(2 p_{-\alpha}\left(p_{+} \cdot k_{1}\right)-2 p_{+\alpha}\left(p_{-} \cdot k_{1}\right)\right)+\right.\right. \\
\left(\left(v_{2}+a_{2} \gamma_{5}\right) p_{-\beta}+\left(v_{3}+a_{3} \gamma_{5}\right) p_{+\beta}\right)\left(\gamma_{\alpha} 2 p_{-} \cdot k_{1}-2 p_{-\alpha} k_{1}\right)+ \\
\left.\left(\left(v_{4}+a_{4} \gamma_{5}\right) p_{-\beta}+\left(v_{5}+a_{5} \gamma_{5}\right) p_{+\beta}\right)\left(\gamma_{\alpha} 2 p_{+} \cdot k_{1}-2 p_{+\alpha} k_{1}\right)\right)+ \\
\left.\frac{1}{m_{Z}^{2}}\left(v_{6}+a_{6} \gamma_{5}\right)\left(\gamma_{\alpha} k_{1 \beta}-k_{1} g_{\alpha \beta}\right)\right\} \tag{2}
\end{gather*}
$$

- One can also write a general amplitude with chirality violating couplings
- We derive expressions for angular distributions arising from chirality conserving and chirality violating amplitudes interfering with the SM contribution
- We include longitudinal polarization or transverse polarization

Differential cross section with transverse polarization

The differential cross section for e^{-}and e^{+}transverse polarization P_{T} and \bar{P}_{T} comes out to be:

$$
\begin{gathered}
\left(\frac{d \sigma}{d \Omega}\right)_{T}=\mathscr{B}_{T}\left[\frac{1}{\sin ^{2} \theta}\left(1+\cos ^{2} \theta+\frac{4 \bar{s}}{(\bar{s}-1)^{2}}-P_{T} \bar{P}_{T} \frac{g_{V}^{2}-g_{A}^{2}}{g_{V}^{2}+g_{A}^{2}} \sin ^{2} \theta \cos 2 \phi\right)+\right. \\
\left.C_{T}^{C C}+C_{T}^{C V}\right]
\end{gathered}
$$

with

$$
\mathscr{B}_{T}=\frac{\alpha^{2}}{16 \sin ^{2} \theta_{W} m_{W}^{2} \bar{s}}\left(1-\frac{1}{\bar{s}}\right)\left(g_{V}^{2}+g_{A}^{2}\right),
$$

and

$$
C_{T}^{C C}=\frac{1}{4\left(g_{V}^{2}+g_{A}^{2}\right)}\left\{\sum_{i=1}^{6}\left(g_{V} \operatorname{Im} v_{i}+g_{A} \operatorname{Im} a_{i}\right) X_{i}+\right.
$$

$$
\left.P_{T} \bar{P}_{T} \sum_{i=1}^{6}\left(\left(g_{V} \operatorname{Im} v_{i}-g_{A} \operatorname{Im} a_{i}\right) \cos 2 \phi+\left(g_{A} \operatorname{Re} v_{i}-g_{V} \operatorname{Re} a_{i}\right) \sin 2 \phi\right) Y_{i}\right\}
$$

Asymmetry

- We can use different azimuthal asymmetries to isolate different combinations of couplings.
- For the asymmetry A defined earlier,

$$
\begin{aligned}
A= & \frac{1}{\sigma}\left[\Delta \sigma_{\mathrm{FB}}(0<\phi<\pi / 2)-\Delta \sigma_{\mathrm{FB}}(\pi / 2<\phi<\pi)\right. \\
& \left.+\Delta \sigma_{\mathrm{FB}}(\pi<\phi<3 \pi / 2)-\Delta \sigma_{\mathrm{FB}}(3 \pi / 2<\phi<2 \pi)\right]
\end{aligned}
$$

Asymmetry

- We can use different azimuthal asymmetries to isolate different combinations of couplings.
- For the asymmetry A defined earlier,

$$
\begin{aligned}
A= & \frac{1}{\sigma}\left[\Delta \sigma_{\mathrm{FB}}(0<\phi<\pi / 2)-\Delta \sigma_{\mathrm{FB}}(\pi / 2<\phi<\pi)\right. \\
& \left.+\Delta \sigma_{\mathrm{FB}}(\pi<\phi<3 \pi / 2)-\Delta \sigma_{\mathrm{FB}}(3 \pi / 2<\phi<2 \pi)\right]
\end{aligned}
$$

we get the expression:

$$
\begin{aligned}
& A\left(\theta_{0}\right)=\mathscr{B}^{\prime} P_{T} \bar{P}_{T} \\
& {\left[g_{A}\left\{\bar{s}\left(\operatorname{Re} v_{3}+\operatorname{Re}^{2}\right)+2 \operatorname{Re} v_{6}\right\}-g_{V}\left\{\bar{s}\left(\operatorname{Re}_{3}+\operatorname{Re} a_{4}\right)+2 \operatorname{Re} a_{6}\right\}\right]}
\end{aligned}
$$

- It depends on the real parts of a combination of v_{3}, v_{4}, v_{6} and a_{3}, a_{4}, a_{6}

Asymmetry

- We can use different azimuthal asymmetries to isolate different combinations of couplings.
- For the asymmetry A defined earlier,

$$
\begin{aligned}
A= & \frac{1}{\sigma}\left[\Delta \sigma_{\mathrm{FB}}(0<\phi<\pi / 2)-\Delta \sigma_{\mathrm{FB}}(\pi / 2<\phi<\pi)\right. \\
& \left.+\Delta \sigma_{\mathrm{FB}}(\pi<\phi<3 \pi / 2)-\Delta \sigma_{\mathrm{FB}}(3 \pi / 2<\phi<2 \pi)\right]
\end{aligned}
$$

Sensitivity

We can evaluate the 90% CL limits on combinations of couplings corresponding to each asymmetry assuming the parameters

$$
\sqrt{s}=500 \mathrm{GeV}, P_{T}=0.8, \bar{P}_{T}=0.6, \int \mathscr{L}=500 \mathrm{fb}^{-1}
$$

Sensitivity

We can evaluate the 90% CL limits on combinations of couplings corresponding to each asymmetry assuming the parameters

$$
\sqrt{s}=500 \mathrm{GeV}, P_{T}=0.8, \bar{P}_{T}=0.6, \int \mathscr{L}=500 \mathrm{fb}^{-1}
$$

Example:

Sensitivity

We can evaluate the 90% CL limits on combinations of couplings corresponding to each asymmetry assuming the parameters

$$
\sqrt{s}=500 \mathrm{GeV}, P_{T}=0.8, \bar{P}_{T}=0.6, \int \mathscr{L}=500 \mathrm{fb}^{-1}
$$

A_{1}				A_{2}		
$\operatorname{Re} v_{3}$	$\operatorname{Re} v_{4}$	$\operatorname{Re} v_{6}$	$\operatorname{Im} v_{3}$	$\operatorname{Im} v_{4}$	$\operatorname{Im} v_{6}$	
$2.1 \cdot 10^{-4}$	$2.1 \cdot 10^{-4}$	$3.1 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$	$4.6 \cdot 10^{-2}$	
$\operatorname{Re} a_{3}$	$\operatorname{Re} a_{4}$	$\operatorname{Re} a_{6}$	$\operatorname{Im~a}$	$\operatorname{Im} a_{3}$	$\operatorname{Im} a_{6}$	
$3.1 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$	$4.6 \cdot 10^{-2}$	$2.1 \cdot 10^{-4}$	$2.1 \cdot 10^{-4}$	$3.1 \cdot 10^{-3}$	

Table: Sensitivities for the asymmetries A_{1} and A_{2}.

Summary

- General expressions using only Lorentz invariance were obtained for the processes $e^{+} e^{-} \rightarrow H Z$ and $e^{+} e^{-} \rightarrow \gamma Z$ (assuming chirality conserving and chirality violating couplings to $e^{+} e^{-}$)
- The corresponding angular dependences were obtained to linear order in new couplings for arbitrary longitudinal and transverse beam polarizations
- Asymmetries which isolate different θ and ϕ combinations in the diff.c.s. were calculated
- A CP-odd CPT-even asymmetry was found which needs e^{+}and e^{-}transverse polarizations
- In the HZ case, this is present only when four-point $e^{+} e^{-} \mathrm{HZ}$ coupling is considered
- Limits of order 10^{-3} can be obtained on the dimensionless couplings at ILC

