The physics chapters in the GDE documents

Abdelhak Djouadi, Joe Lykken, Klaus Mönig, Yasuhiro Okada, Mark Oreglia and Satoru Yamashita

Presentation at LCWS 2006 Bangalore

Introduction

Documents to be produced by the end of 2006:

- GDE ILC Reference Design Report (incl. a short physics chapter)
- Detector Concepts Report (including a longer physics chapter)

Editors of the physics chapters (1 exp., 1 theo. / region):

- America: Mark Oreglia, Joe Lykken
- Asia: Satoru Yamashita, Yasuhiro Okada
- Europe: Klaus Mönig, Abdelhak Djouadi

Editors of the detector chapters:

Ties Behnke, John Jaros, Akiya Miyamoto, Chris Damerell

Timescale:

- Bangalore: Presentation and discussion of the outline
- Vancouver (July): Detailed discussion with the community
- Further discussions in the other regions
 - Europe: Some discussion may take place at the ILC software and physics meeting in Cambridge (April)
 - America, Asia: nothing planned yet?

Plan for Bangalore:

- Presentation of outline in plenary
- Discussion in the working groups
- Feedback from the WGs in a parallel session
- Short presentation of the results in the summary session

Proposed outline

- Introduction
 - Physics landscape in 2015 (incl. pos. outcome from LHC)
 - Important open questions in particle physics
 - ullet Possible running scenario for ILC ($E, \mathcal{L}, P_{e^\pm}$, options)
 - Physics signals at the ILC
- The physics of electroweak symmetry breaking
 - The Higgs sector
 - Couplings of gauge bosons (GigaZ, TGCs)
 - Top quark physics and QCD
 - Physics beyond the Standard Model: Supersymmetry
 - Some alternatives to SUSY
- Connections to cosmology
 - Dark matter: neutralinos, KK states?
 - Baryogenesis and CP violation, ??

A few remarks

- The outline is strictly physics driven
 - "Signals" like Z' appear in different places (mainly in "Physics signals" of introduction and refered to later).
 - Standard Model physics including Higgs physics will be described in detail. Full or hybrid simulations?
 - New Physics will be described in terms of a few examples (a few SUSY scenarios, etc..). Which ones should we choose?
- The chapter has to justify 500 GeV Linear Collider
- The need for a 1 TeV upgrade has to be discussed.
- Connections to LHC, cosmology etc. have to be stressed
- What about simultaneous running with the LHC?

Work to do

- We need to prove that we can do the physics we claim
- For some difficult key channels this means full simulation:
 - BR $(H \to c\overline{c})$
 - $oldsymbol{arphi}$ $ilde{ au}$ in low $\Delta ilde{m}$ SUSY
 - WW ZZ separation
- For other channels we can live with a hybrid solution?
 - ullet Trilinear Higgs couplings in ZHH production
 - (Double) Higgs production in WW fusion
 - Strongly interacting Higgs sector?
 - Top quark Yukawa coupling?
- Some other items to be discussed:
 - m q ar q prod.: statistical and systematic errors on σ and A_{FB}
 - Top weak couplings (which energy is needed?),

Work to do (continued)

- Requirements from theory (examples)
 - Higgs couplings:
 - What is expected in a "model independent" analysis?
 - Which ones are possible if no NP is seen at LHC?
 - Which precision on the quark masses is possible in 2015?
 - special emphasis on self-couplings (model independent).
 - Strongly interacting Higgs sector: summarise all available information and update and/or improve it....
 - New Physics:
 - which SUSY senarios to study (SPS1a, low $\Delta \tilde{m}$, scenarios with heavy scalars,)
 - which alternatives to discuss (Little Higgs, Technicolour, compositness, extra dimensions, ...??)
 - focus on determination of Dark Matter relic abundance?

_ . . .

Plan

- Please discuss these points in your // sessions
- Come with your feedback to the DCR // session on Sunday
- Attend the "concluding" session on Monday
- Keep working and discussing with us until the end of the year!

Thank you for your input in advance!