Stimulated Breit-Wheeler process as a source of background pairs

LCWS06 March 2006

Tony Hartin

Outline

• Have the effect of intense beam fields been fully taken into account?

- 1st order coherent pair production fully covered but 2nd order not
- Why consider 2nd order coherent pair production?

Resonances in the 2nd order IFQED processes

- Moller process Oleinik (1967), Bos et al (1979), Panek et al (2003)
- Stimulated Breit-Wheeler in CIRCULARLY POLARISED field
- Self Energy calculations in an external field

• The nature of the ILC beam field and its inclusion in QED calculations of stimulated Breit-Wheeler process

- Constant crossed e-m field
- 3 different methods

Preliminary results

•Only sketch some issues to do with the calculation

Separated resonant and non-resonant crossections

Is there another non-linear source of pairs at the IP?

• Known: coherent pair production $k_b + nk \rightarrow e^- + e^+$

 rate described by Sokolov-Ternov and onset governed by beam parameter Y=E/E_c~0.3. Scheme1 has Y=0.054, Scheme14 has Y=0.376

e+

 k_{h2}

- Unknown: Multiphoton Breit-Wheeler $k_{b1} + k_{b2} + nk \rightarrow e^- + e^+$
 - •2nd order process rather than 1st order
 - •Rules for onset are different

•Calculation is complicated, but simplified when the photons are co-linear

Resonances in 2nd order IFQED processes

- Pairs created in intense e-m field have a quasi-level structure and resonant transitions can occur $(q+nk)^2 = m^2(1+\nu^2)$ (Zeldovich, 1967)
- 2nd order IFQED x-section can exceed normal x-sections by orders of magnitude (Oleinik, JETP 25(4) 697, 1967)
- 2nd order Breit-Wheeler process in CIRCULARLY POLARISED field shows the same feature

Experimental evidence for the IFQED processes

• 1st order: One photon pair production

- Experiment E144 SLAC. 46 GeV beam with Nd:glass laser peak intensity 0.5x10¹⁸ Wcm⁻². Up to 4 photons contributed to each event
- Meyerhofer et al (1996) other nonlinear phenomena such as electron mass shift observed

e-

 k_{h2}

2nd order: Substantial theoretical studies but no experimental efforts yet!

• **BUT** potentially more detectable because of resonances

e+

The field of the relativistic charge beams

- With low disruption, approximate to a constant crossed e-m field perpendicular to direction of propagation
- SIMPLIFICATION: Beamsstrahlung photons k₁ and k₂ emitted forward. Assume they are collinear
- COMPLICATION: Symmetry of the field seen by the synchrotron photons

Including the external field in IFQED calculations

- 'Operator Method': quantum interaction of electron and external field photons but electron trajectory is considered classical. Due to Baier et al (JETP 28(4) p.807, 1969)
- Full quantum treatment: Horrendously complex but potentially doable with Vermaseren's FORM
- 'Semi-classical method': Dirac equation is solved exactly for interaction with a classical planewave e-m field. Most common method. Used originally by Narozhnyii, Nikishov and Ritus in the mid 1960s

FORM by J.Vermaseren, version 3.1(Jul 22 2002) Run at: Mon Jul 22 15:06:39 200 #: SmallSize 10000000 #: LargeSime Of 0000

 $U_{fi} = \left\langle f \left| \int e^{i\omega t} M_{fi}(t) dt \right| i \right\rangle$

IFQED – Dirac Equation Solution

- Exponential dependency on external field 4-potential $\exp\left\{\int d\phi \left[i(A^e p) - i(A^e)^2\right]\right\}$
- Fourier Expansion in contributions of n external field photons
- Different external field polarisations lead to different "form factor" functions
 Circular polarisation Bessel functions n Jn(Q)

Linear polarisation Generalised Bessel–type functions

Constant crossed field-Azimuthally symmetric Airy functions Airy functions Airy functions

 Constant crossed field –Nonazimuthally symmetric New 'AiJ' functions —> n AiJn(Q)

Calculation of Resonance widths

- The Electron Self Energy must be included in the Multiphoton Breit-Wheeler process
- This is a 2nd order IFQED process in its own right.
- Renormalization/Regularization reduces to that of the non-external field case
- The Electron Self Energy in external CIRCULARLY POLARISED e-m field originally due to Becker & Mitter 1975 for low field intensity parameter v=(ea/m)². Has been recalculated for general v
- ESE in external CONSTANT CROSSED field is due to Ritus, 1972
- Optical theorem: the imaginary part of the ESE is the same form as the Sokolov-Ternov equations

Where do the resonances occur?

- Beamsstrahlung photon E_S >> 0.511 MeV
- Beam photon E_B < 0.511 MeV</p>
- Processes which give/take energy to the field allowed and mass shell can be reached for physical values
- For collinear beamstrahlung photons, resonance condition is r (external field photons) ~ E_s/E_B

Notes on the cross-section calculation

• Full trace contains ~ 100,000 terms

 $\sum_{i,f} |S_{fi}^{\epsilon}|^2 = -\frac{\epsilon^2}{16m^2} \sum_{l} \delta^4 (k_1 + k_2 + lk - q_- - q_+) \operatorname{Tr} Q_{\text{STPPP}}$

where $\operatorname{Tr} Q_{\mathsf{STPPP}} = \sum_{j} \left[\operatorname{Tr} Q_1(\bar{p}_r, \bar{p}_{r,j}) + \operatorname{Tr} Q_1(\bar{p}_r, \bar{\bar{p}}_{r,j}) + \operatorname{Tr} Q_2(\bar{p}_r, \bar{\bar{p}}_{r,j}) + \operatorname{Tr} Q_2(\bar{p}_r, \bar{\bar{p}}_{r,j}) \right]$

and $Q_1(\bar{p}_\tau, \bar{p}_{\tau'}) = (\not p_- + m)B(\gamma_\mu, \overline{N}_\tau, \bar{p}, p_-) \left[\frac{\bar{p}_\tau + m}{\bar{p}_\tau^2 - m^2}\right] B(\gamma_\nu, \overline{M}_\tau, -p_+, \bar{p})$

- Dramatically simplified by
 - Special "centre of mass-like" reference frame

$$\underline{k}_1 + \underline{k}_2 = \underline{q}_- + \underline{q}_+ - r\underline{k} = 0$$

- Assume beamsstrahlung photons and beam field photons are collinear
- Only insert Imaginary part of self energy to get resonance width

And the PRELIMINARY results....?

Results: Stimulated Breit-Wheeler (Non-Resonant)

 Compare Stimulated Breit-Wheeler process with ordinary Breit-Wheeler process

 Examine the resonant and nonresonant contributions to the cross-section separately

 Nonresonant Stimulated Breit-Wheeler cross-section only a few percent of the ordinary Breit-Wheeler cross-section

 Can be neglected as a source of extra pairs

Results: Stimulated Breit-Wheeler (Resonant)

- Differential cross-section can exceed the ordinary Breit-Wheeler process
- Stimulated Breit-Wheeler Crosssection up to 2 orders of magnitude greater than ordinary breit-wheeler
- Transverse production of pairs seems favoured

PROVISO – calculation for special reference frame. Need to generalise the case!

Summary

- 2nd order, nonlinear interactions of beamsstrahlung photons with the beam fields should be taken into account because the crosssections are potentially resonant and can exceed 1st order and "linear" ordinary cross-sections – established by substantial theoretical work by several groups
- Preliminary calculations of the Stimulated Breit-Wheeler process (simplified case) suggests that this will be an issue at the ILC
- Calculations need to be completed for the general case and predictions made of numbers, angular spread and energy spectrum of the additional background pairs

• Searches of unexplained pair backgrounds at other experiments