Stimulated Breit-Wheeler process as a source of background pairs

Outline

- Have the effect of intense beam fields been fully taken into account?
- 1st order coherent pair production fully covered but 2nd order not
- Why consider 2nd order coherent pair production?
- Resonances in the 2 nd order IFQED processes
- Moller process - Oleinik (1967), Bos et al (1979), Panek et al (2003)
- Stimulated Breit-Wheeler in CIRCULARLY POLARISED field
- Self Energy calculations in an external field
- The nature of the ILC beam field and its inclusion in QED calculations of
stimulated Breit-Wheeler process
- Constant crossed e-m field
- 3 different methods
- Preliminary results
-Only sketch some issues to do with the calculation
- Separated resonant and non-resonant crossections

Is there another non-linear source of pairs at the IP?

- Known: coherent pair production $k_{b}+n k \rightarrow e^{-}+e^{+}$
- rate described by Sokolov-Ternov and onset governed by beam parameter $\mathrm{Y}=\mathrm{E} / \mathrm{E}_{\mathrm{c}} \sim 0.3$. Scheme 1 has $\mathrm{Y}=0.054$,
Scheme14 has $\mathrm{Y}=0.376$
- Unknown: Multiphoton Breit-Wheeler $k_{b 1}+k_{b 2}+n k \rightarrow e^{-}+e^{+}$
$-2^{\text {nd }}$ order process rather than $1^{\text {st }}$ order
-Rules for onset are different
-Calculation is complicated, but simplified when the photons are co-linear

Resonances in $2^{\text {nd }}$ order IFQED processes

- Pairs created in intense e-m field have a quasi-level structure and resonant transitions can occur

$$
(q+n k)^{2}=m^{2}\left(1+v^{2}\right)
$$

(Zeldovich, 1967)

- $2^{\text {nd }}$ order IFQED x-section can exceed normal x-sections by orders of magnitude (Oleinik, JETP 25(4) 697, 1967)
- $2^{\text {nd }}$ order Breit-Wheeler process in CIRCULARLY POLARISED field shows the same feature

Experimental evidence for the IFQED processes

- $1^{\text {st }}$ order: One photon pair production
- Experiment E144 SLAC. 46 GeV beam with Nd:glass laser peak intensity $0.5 \times 10^{18} \mathrm{Wcm}^{-2}$. Up to 4 photons contributed to each event
- Meyerhofer et al (1996) other nonlinear phenomena such as electron mass shift observed
- $2^{\text {nd }}$ order: Substantial theoretical studies but no experimental efforts yet!
- BUT potentially more detectable because of resonances

The field of the relativistic charge beams

- With low disruption, approximate to a constant crossed e-m field perpendicular to direction of propagation
- SIMPLIFICATION: Beamsstrahlung photons k_{1} and k_{2} emitted forward. Assume they are collinear
- COMPLICATION: Symmetry of the field seen by the synchrotron photons

$\operatorname{AiJ}(P, n)=\int_{0}^{\infty} J_{0}\left(P t^{2}\right) \cos \left(n t+t^{3} / 3\right) d t$

(b) Azimuthally symmetric

$$
\operatorname{Ai}(n)=\int_{0}^{\infty} \cos \left(n t+t^{3} / 3\right) d t \equiv K_{1 / 3}
$$

Including the external field in IFQED calculations

- 'Operator Method': quantum interaction of electron and external field photons but electron trajectory is considered classical. Due to Baier et al (JETP 28(4) p.807, 1969)
- Full quantum treatment: Horrendously complex but potentially doable with Vermaseren's FORM

- 'Semi-classical method': Dirac equation is solved exactly for interaction with a classical planewave e-m field. Most common method. Used originally by Narozhnyii, Nikishov and Ritus in the mid 1960s

IFQED - Dirac Equation Solution

- Exponential dependency on external field 4-potential

$$
\exp \left\{\int d \phi\left[i\left(A^{e} p\right)-i\left(A^{e}\right)^{2}\right]\right\}
$$

- Fourier Expansion in contributions of n external field photons
- Different external field polarisations lead to different "form factor" functions Circular polarisation
Bessel functions

Linear polarisation
Generalised Bessel-type functions
-
Constant crossed field-Azimuthally symmetric
Airy functions \qquad n Ai(n Q)

- Constant crossed field -Nonazimuthally symmetric New 'AiJ' functions $\longrightarrow \mathrm{n}$ AiJn(Q)

Calculation of Resonance widths

a The Electron Self Energy must be included in the Multiphoton Breit-Wheeler process

- This is a $2^{\text {nd }}$ order IFQED process in its own right.
a Renormalization/Regularization reduces to that of the non-external field case
a The Electron Self Energy in external CIRCULARLY POLARISED e-m field originally due to Becker \& Mitter 1975 for low field intensity parameter $v=(e a / m)^{2}$. Has been recalculated for general v
- ESE in external CONSTANT CROSSED field is due to Ritus, 1972
- Optical theorem: the imaginary part of the ESE is the same form as the Sokolov-Ternov equations

Where do the resonances occur?

- Beamsstrahlung photon $\mathrm{E}_{\mathrm{S}} \gg 0.511 \mathrm{MeV}$
- Beam photon $\mathrm{E}_{\mathrm{B}}<0.511 \mathrm{MeV}$
- Processes which give/take energy to the field allowed and mass shell can be reached for physical values
- For collinear beamstrahlung photons, resonance condition is r (external field photons) $\sim E_{S} / E_{B}$

Notes on the cross-section calculation

- Full trace contains $\boldsymbol{\sim} 100,000$ terms

- Dramatically simplified by
- Special "centre of mass-like" reference frame

$$
{\underset{\rightarrow 1}{ }}_{k_{1}}^{k_{2}}=\underline{q}+{\underset{\rightarrow}{+}}^{q}-r \underset{\sim}{k}=0
$$

- Assume beamsstrahlung photons and beam field photons are collinear
- Only insert Imaginary part of self energy to get resonance width

Results: Stimulated Breit-Wheeler (Non-Resonant)

- Compare Stimulated BreitWheeler process with ordinary Breit-Wheeler process
- Examine the resonant and nonresonant contributions to the cross-section separately
- Nonresonant Stimulated BreitWheeler cross-section only a few percent of the ordinary BreitWheeler cross-section
- Can be neglected as a source of extra pairs

Results: Stimulated Breit-Wheeler (Resonant)

- Differential cross-section can exceed the ordinary Breit-Wheeler process
- Stimulated Breit-Wheeler Crosssection up to 2 orders of magnitude greater than ordinary breit-wheeler
- Transverse production of pairs seems favoured

> PROVISO - calculation for special reference frame. Need to generalise the case!

Summary

- $2^{\text {nd }}$ order, nonlinear interactions of beamsstrahlung photons with the beam fields should be taken into account because the crosssections are potentially resonant and can exceed $1^{\text {st }}$ order and "linear" ordinary cross-sections - established by substantial theoretical work by several groups
- Preliminary calculations of the Stimulated Breit-Wheeler process (simplified case) suggests that this will be an issue at the ILC
- Calculations need to be completed for the general case and predictions made of numbers, angular spread and energy spectrum of the additional background pairs
- Searches of unexplained pair backgrounds at other experiments

