Physics issues on triggering

Klaus Mönig

Physics requirements

- The ILC should be "triggerless" All events can be analysed offline
- Event rates:
 - "high Q^{2} " (WW, q\bar{q} ...): 0.1/train
 - -Bhabha: 4/train
 - $-\gamma\gamma \to \ell^+\ell^-$: 15/train
 - $-\gamma\gamma \rightarrow q\bar{q}$: 200/train
- All events are potentially interesting, e.g. $\gamma\gamma$ and low ΔM SUSY are difficult to distinguish

2

- VTX and TPC integrate over ~ 100 bunch crossings
 - \rightarrow a naive trigger would keep all data if $\gamma\gamma$ events are kept
- Can we write everything?
 - -TESLA TDR: 1 GByte/s \Rightarrow 10 PByte/a \sim 10×LHC rate
 - -Seems a bit too much

Example low ΔM SUSY

- Signal: $e^+e^- \to \tilde{\tau}^+\tilde{\tau}^- \to \tau^+\tau^- 2\tilde{\chi}_1^0$
- Because of small $\tilde{\tau} \tilde{\chi}_1^0$ mass difference the τ have very little energy
- Background: $\gamma \gamma \to \ell^+ \ell^-$ events $(\gamma \gamma \to q\bar{q} \text{ background relatively easy to reject)}$
- Signal selection: Missing p_t (topology) and no electron in beamcal
- Could we dare to run part of the analysis on the trigger farm?

How can we reduce the data size?

- Data volume (TESLA TDR):
 - -50% TPC
 - -40% ECAL
 - -5% VTX
 - -5% rest
- Most of the data volume is background
- For Bhabha events may delete TPC, VTX and ECAL
- ECAL and most of rest:
 - time stamping to one bunch crossing possible
 - -can reduce by factor 10 by "event trigger"
 - -further reduction would require selection of "interesting region"

• TPC:

- tracks drift as a whole through the detector
- -can reject tracks by z impact parameter and maybe dE/dx (low momentum electrons)
- also here a factor 10 may be possible

• VTX:

- -don't see any unbiased way to reduce data volume
- only possibility would be to select "interesting regions"
- In total a factor 5-10 maybe possible without bias
- Total data volume similar to LHC in this case
- Further reduction requires cut into $\gamma\gamma$ events