Compton based Polarized Positrons Source for ILC

S.Roychowdhury

On behalf of

V.Yakimenko¹, D.Cline², I.V.Pogorelsky¹, V.N.Litvinenko¹

Linear Collider Workshop 2006

March 9 – March 13, 2006, Bangalore, India

- 1.BrookhavenNationaLaboratory,NY,USA
- 2. University Of California at LosAngeles, CA, USA

3. Duke University, NC, USA

Outline

- •Review
 - •Requirements (positron beam) for International Linear Collider
 - Proposal by Omori, et al
- •ATF(BNL,NY) proposal
 - •Introduce the proposal
 - •Discuss parameter choice
 - •Ring vs. Linac and stacking vs.no-stacking
- Laser System
- •Experiment

ATF,BNL KEK,Japan

Conclusions

ILC Source Requirements

Parameter	Symbol	Value	Unit
Positrons per bunch	n_p	2x10 ¹⁰	e ⁺
Bunches per pulse	N_b	2820	
Bunch Spacing*	t_b	~300	ns
Pulse rep. rate	f_{rep}	5	Hz
Energy	E_0	5	GeV
Positron Polarization**	P_p	~60	%

^{*}Length of bunch train=2820x300(ns)=0.85ms~250km

^{**}Conversion/capture efficiency for polarized gamma $\leftarrow \rightarrow$ polarized e+ 60% $\leftarrow \rightarrow$ 1.5%

Polarized Positron Production Compton Ring Scheme: CO₂ Version (Omori, et al.)

Polarized Positrons Source (PPS for ILC)

ATF,BNL Proposal

- □Polarized Gamma Ray Generated By
 - Compton scattering inside optical cavity of CO₂ laser with
 - •6 GeV electron beam produced by Linac
 - •Expected Efficiency Nγ/Ne⁻~10
- □Polarized Positron Beam Generated By
 - •Scattering 80 MeV γ ray on a thin target
 - •Capture Efficiency Ne+/Nγ~1.5%

Merits of the Proposal

- ☐ Required intensities of polarized positrons obtained because
 - e-beam charge is sufficiently high(10 times compared to conventional non polarized source)
 - complex CO₂ laser system
- ☐ L-band type photo injector and linac for acceleration
 - No R&D required
- ☐ Laser system
 - commercially available lasers
 - R&D for the new mode of operation (described later)

Choice of Parameters

$$N_{\vec{\gamma}} = \frac{N_e N_{\vec{\varphi}}}{S} \sigma_C$$

Ne # of electrons, N_{ϕ} # of laser photons Ny # of gamma rays, S area of interacting beams

 σ_c Compton cross section

- □ To produce 10^{12} positrons per bunch \leftarrow ~10 nc electron bunches □ Pulse train structure(2820) is set by main linac. ☐ Bunch spacing(~300 ns) is to be changed in the damping ring(any design) • ~3ns spacing matches inversion life time of laser (3ns*2820=8.5microsec) ☐ Laser Energy limited to ~1J Non linear effects in Compton scattering Laser Focus @40μm Practical consideration of e and laser beam focusing 5 ps long laser ☐ Reducing charge in bunches(positron stacking) leads to • increase in average laser power ☐ Gamma beam size is smaller(compared to other designs)
- compact design of Compton backscattering region
- ☐ Conversion Efficiency (polarized gamma to captured polarized positron)
 - assumed ~1.5%
 - subject to optimization

Polarized Gamma Beam Generation Summary

Parameter	Symbol	Single Shot Injection	Stacking mode	Unit
Rep rate	f_{rep}	5	150	Hz
e- per bunch	n_p	8×10 ¹⁰	8×10 ⁹	
Bunches per pulse	N _b	2820	2820	
Bunch Spacing	$ au_b$	3	3	ns
Beam current (ave./pulse)	$I_{\it beam}$	0.2 / 4	0.6 / 0.4	mA/A
Average beam power	P _{beam}	1	3	MW
Number of lasers	N _{laser}	15	5	
Laser pulse length	τ _{laser}	5	5	ps
Intra cavity energy	E _{laser}	8 × 0.8	8 × 0.8	J
Size at focus	σ_{laser}	40	40	μ m
Efficiency per laser IP	Ny/Ne-	1	1	
Number of γ per bunch	M	1.5×10 ¹²	1.5×10 ¹²	

Ring Or Linac?

- ☐ 6 GeV Compton Ring
 - rms energy spread ~ 2%
 - CO₂ laser interaction with 4MW synchrotron radiation.
 - Dificult ring design
 - Very difficult laser design
 - high repition rate
 - high average power
 - cavity stacking
- ☐ Aperture Requirements of Ring Design
 - small angle Compton back scattering
 - less efficient

- ☐ Linac Design
 - Head On Compton back scattering

Stacking or No Stacking?

- No Stacking
 - High current in macropulse(~ 4 A)
 - short accelerator sections,
 - more klystrons
 - longer linac

- □ Stacking
 - High repitition
 - average beam power inc
 - 3MW for 150Hz.
 - Linac
 - SuperConducting
 - NormalConducting

•Simpler damping ring and laser system at 5Hz for the scheme without accumulation may offset linac complexity.

Status Of Laser System For Polarized Positron Source

- ✓ Optical slicing and amplification
 - demonstrated at ATF
 - •routine for user experiments*
- ✓CO₂ oscillator and amplifier
 - •commercially available from SDI
 - •rep rate up to 500Hz
- Final Intra-cavity amplifiers
 - •average power 10-20 Kw(150Hz)
 - Needs R&D
- Optical elements
 - •need to withstand high intra-cavity power
 - to be addressed by industry

Laser From SDI

http://www.lightmachinery.com/SDI-CO2-lasers.html

Wavelength (continous)	9 – 11μm, Line Tunable		
Repetition Rate	20 Hz 100 Hz 350 Hz 500 Hz		
Pulse Energy	1.5 J		
Mode Type	Multimode		
optional	TEMoo, custom beam shapes, SLM		
Beam Size	13 x 13 mm ²		
Average Power	30 W 150 W 525 W 750 W		
Power Stability	< 7 %		

WH10

Compton Experiment at ATF,Brookhaven (record number of X-rays with 10 µm laser)

- •X rays generated > $\sim 10^8 \, \text{PR ST } 2000$
- $\bullet N_x/N_e \sim 0.1$
- •Interaction point with high power laser focus of ~30µm was tested.
- •Nonlinear limit (more then one laser photon scattered from electron) was verified. **PRL 2005.**

Compton Experiment at KEK ATF (polarized positrons with 532 nm laser)

- Demonstrated beam of 10^6 polarized γ-rays (PRL 91/16, 2003)
- ☐ Demonstrated 10⁴ positron beam with 79% polarization level (KEK Preprint 2005-56, PRL 2005)

Conclusion

- ☐ We propose a Polarized Positron Source.
 - based on Compton back scattering inside optical cavity of CO₂ laser beam and 6 GeV e-beam produced by linac.
- ☐ The proposal utilizes commercially available units for laser and accelerator systems.
- ☐ The proposal requires high power picosecond CO2 laser mode of operation developed at ATF
- □ 3 year laser R&D is needed to verify laser operation in the non standard regime.