Compton based Polarized Positrons Source for ILC

S.Roychowdhury On behalf of V.Yakmenko¹, D.Cline², I.V.Pogorelsky¹, V.N.Litvinenko¹ Linear Collider Workshop 2006 March 9 – March 13, 2006, Bangalore, India

1.BrookhavenNationaLaboratory,NY,USA

2.University Of California at LosAngeles, CA, USA

3. Duke University, NC, USA

Outline

•Review

•Requirements (positron beam) for International Linear Collider

•Proposal by Omori,et al

•ATF(BNL,NY) proposal

- •Introduce the proposal
- •Discuss parameter choice
- •Ring vs. Linac and stacking vs.no-stacking
- •Laser System
- •Experiment
 - ATF,BNL KEK,Japan

•Conclusions

ILC Source Requirements

Parameter	Symbol	Value	Unit
Positrons per bunch	n _p	2x10 ¹⁰	e ⁺
Bunches per pulse	N_b	2820	
Bunch Spacing*	t _b	~300	ns
Pulse rep. rate	f_{rep}	5	Hz
Energy	E_{0}	5	GeV
Positron Polarization**	P_p	~60	%

*Length of bunch train=2820x300(ns)=0.85ms~250km

**Conversion/capture efficiency for polarized gamma \longleftrightarrow polarized e⁺ 60% \longleftrightarrow 1.5%

Polarized Positron Production Compton Ring Scheme: CO₂ Version (Omori, et al.)

Polarized Positrons Source (PPS for ILC)

ATF,BNL Proposal

Polarized Gamma Ray Generated By

• Compton scattering inside optical cavity of CO₂ laser with

•6 GeV electron beam produced by Linac

•Expected Efficiency Nγ/Ne⁻~10

Polarized Positron Beam Generated By

•Scattering 80 MeV γ ray on a thin target

•Capture Efficiency Ne⁺ / N γ ~1.5%

Merits of the Proposal

Required intensities of polarized positrons obtained because

- e-beam charge is sufficiently high(10 times compared to conventional non polarized source)
- complex CO₂ laser system
- □ L-band type photo injector and linac for acceleration
 - No R&D required
- □ Laser system
 - commercially available lasers
 - R&D for the new mode of operation (described later)

Choice of Parameters

Ne # of electrons, N_{ϕ} # of laser photons N γ # of gamma rays, S area of interacting beams σ_c Compton cross section

- □ To produce 10^{12} positrons per bunch $\leftarrow \rightarrow \sim 10$ nc electron bunches
- □ Pulse train structure(2820) is set by main linac.
- □ Bunch spacing(\sim 300 ns) is to be changed in the damping ring(any design)
 - ~3ns spacing matches inversion life time of laser (3ns*2820=8.5microsec)
- □ Laser Energy limited to ~1J
 - Non linear effects in Compton scattering
- □ Laser Focus @40µm
 - Practical consideration of e and laser beam focusing
 - 5 ps long laser
- □ Reducing charge in bunches(positron stacking) leads to
 - increase in average laser power
- Gamma beam size is smaller(compared to other designs)
 - compact design of Compton backscattering region
- □ Conversion Efficiency (polarized gamma to captured polarized positron)
 - assumed $\sim 1.5\%$
 - subject to optimization

Polarized Gamma Beam Generation Summary

Parameter	Symbol	Single Shot Injection	Stacking mode	Unit
Rep rate	f _{rep}	5	150	Hz
e ⁻ per bunch	n _p	8×10 ¹⁰	8×10 ⁹	
Bunches per pulse	N _b	2820	2820	
Bunch Spacing	$ au_b$	3	3	ns
Beam current (ave./pulse)	I_{beam}	0.2 / 4	0.6 / 0.4	mA/A
Average beam power	P _{beam}	1	3	MW
Number of lasers	N _{laser}	15	5	
Laser pulse length	$ au_{laser}$	5	5	ps
Intra cavity energy	E _{laser}	8 x 0.8	8 × 0.8	J
Size at focus	$\sigma_{\it laser}$	40	40	μ m
Efficiency per laser IP	Nγ/Ne-	1	1	
Number of γ per bunch	Νγ	1.5×10 ¹²	1.5×10 ¹²	

Ring Or Linac?

□ 6 GeV Compton Ring

- rms energy spread ~ 2%
 - CO₂ laser interaction with 4MW synchrotron radiation.
- Dificult ring design
- Very difficult laser design
 - high repition rate
 - high average power
 - cavity stacking
- Aperture Requirements of Ring Design
 - small angle Compton back scattering
 - less efficient

Linac Design

Head On Compton back
 scattering

Stacking or No Stacking?

Stacking No Stacking High repitition • High current in macro-• average beam power inc pulse(~4 A)• 3MW for 150Hz. • short accelerator sections, • Linac • more klystrons • SuperConducting • longer linac • NormalConducting

•Simpler damping ring and laser system at 5Hz for the scheme without accumulation may offset linac complexity.

Status Of Laser System For Polarized Positron Source

✓ Optical slicing and amplification demonstrated at ATF routine for user experiments* \checkmark CO₂ oscillator and amplifier •commercially available from SDI •rep rate up to 500Hz Final Intra-cavity amplifiers •average power 10-20 Kw(150Hz) • Needs R&D Optical elements •need to withstand high intra-cavity power •to be addressed by industry

Laser From SDI

http://www.lightmachinery.com/SDI-CO2-lasers.html

Wavelength (continous)	9 – 11µm, Line Tunable
Repetition Rate	20 Hz 100 Hz 350 Hz 500 Hz
Pulse Energy	1.5 J
Mode Type	Multimode
optional	TEMoo, custom beam shapes, SLM
Beam Size	13 x 13 mm ²
Average Power	30 W 150 W 525 W 750 W
Power Stability	
	WH10

Compton Experiment at ATF,Brookhaven (record number of X-rays with 10 µm laser)

•X rays generated > ~10⁸ <u>PR ST 2000</u>
•N_x/N_e ~0.1
•Interaction point with high power laser focus of ~30µm was tested.
•Nonlinear limit (more then one laser photon scattered from electron) was verified. **PRL 2005.**

Compton Experiment at KEK ATF (polarized positrons with 532 nm laser)

Demonstrated beam of 10⁶ polarized γ-rays (PRL 91/16, 2003)
 Demonstrated 10⁴ positron beam with 79% polarization level (KEK Preprint 2005-56, PRL 2005)

Conclusion

- U We propose a Polarized Positron Source.
 - based on Compton back scattering inside optical cavity of CO₂ laser beam and 6 GeV e-beam produced by linac.
- □ The proposal utilizes commercially available units for laser and accelerator systems.
- The proposal requires high power picosecond CO2 laser mode of operation developed at ATF
- □ 3 year laser R&D is needed to verify laser operation in the non standard regime.

CO₂ Laser @ ATF

Oscillator

- •Single longitudinal,zero transverse mode TEA
- •Source of a 10micron beam
- •1atm discharge cell is the high power element
- •low pressure discharge cell as well

•Pulses

- •100 nano sec
- •1 MW power(20 Hz)

Amplifier

- •3 Atm CO₂
- •Regenerative cavity

extracted after the controlled number of double passes (normally five).
output energy is limited by the damage threshold of the Pockels crystal to ~100 mJ.

- •Multi-pass
 - •The four extra passes through the amplifier
 - •output laser energy of 1 J
 - •peak power is 10 GW

do we need this, necassarily?

Compton Experiment Details1

Electron beam

- Bunch Charge 0.5 –1 nC
- Energy Spread 0.15%
- Normalized emittance 2-4 mm-mrad
- Spot size 32µm
- □ Laser Beam(CO2)
 - 0.6 GW
 - 180 ps
 - Tight Focus
 - Cu Parabolic mirror(5 mm diameter hole)
- □ Laser Lossed Avoided
 - Quasi Gaussian Laser beam-Annular Shape(ZnSe axicon lenses)

Compton Measurement Details2

□ Thomson signal

- Diverging cone of $\theta = 1/\gamma = 8$ mm-mrad
- Detected by 20 mm Si aperture
- 140 cm from the interaction point
 - 120 cm inside vacuum
 - 250 micromts Be
 - 20 cms in air
- separated from e beam by bending dipole magnet
- Detected signal higher than 60 MeV Bremsstrahlung
 - SNR 100
 - max 6.5 KeV(1.8Angstrom)
 - min 5 KeV

180 degree geometry

□ For shorter x ray pulses

• In 180 deg geometry x ray pulse duration

 $\tau_{\rm xray} = \tau_{\rm electron\ bunch\ length} + (\tau_{\rm laser\ pulse\ length}/4\ \gamma^2)$

□ Higher Number of Photons Time Interval for interaction focussed laser and e-beam is $\pi r_L/\lambda$ r_L is laser beam radius r_L is longer in 180 deg geometry

Ref I.V. Pogorelsky et alPRST-Vol3,090702,2000

$$B = \frac{N_x \gamma^2}{4(\pi \sigma_b)^2 \tau_b}$$

B is Brightness N_x*is* number of x ray photons per pulse $\sigma_{\rm b}$ *is* focus spot size

 $\tau_{\rm b}$ is electron bunch length

 CO_2 vs Yag

 E_L is portion of laser energy within time interval 4 z_o / c that participates in interaction with electron bunch Q is electron bunch charge

→ this is invariant

Choose γ and λ as high aspossible

CO2 has ten times λ needs sqrt(10) times energetic e-beam (higher γ) improves angular divergence back scattered x ray ~10 times Nx

Ref I.V. Pogorelsky et alPRST-Vol3,090702,2000

Yag has shorter λ can be focussed to smaller spot needs tighter e beam focus coalignment problems? space charge effects

Undulator vs. Compton Scheme

Undulator

- Additionl energy spread of about 0.15%
- Issues with
 - vacuum in undulator
 - radiation in the beampipe

Compton

- High Current electr beam
- complicated high power laser system
- laser polarisation can be switched easily hence
 - switching positron polarisation
- higher reachable degree of polarisation
- Independent of the elctron linac