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Not All e+e- ZHH Diagrams Contain the HHH Coupling
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Goals of This Analysis

• Verify that triple Higgs coupling error 
depends strongly on jet energy resolution

• Understand and characterize the source of 
the strong dependency on jet energy 
resolution

• Perform analysis using a SM background 
sample that contains all 2,4,6,8-fermion 
processes.
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Monte Carlo Production

• WHIZARD Monte Carlo is used to generate all 
0,2,4,6-fermion and t quark dominated 8-fermion 
processes.

• 1 ab-1 @ 0.5 TeV using ILC params has been 
generated.  Beamstrahlung and linac beam energy 
spread effects included.

• 100% electron and positron polarization is 
assumed in all event generation.  Arbitrary 
electron, positron polarization is simulated by 
properly combining data sets.

• Fully fragmented MC data sets are produced. 
PYTHIA is used for final state QED & QCD 
parton showering, fragmentation, particle decay.
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Note: Cabbibo suppressed 
combinations of qq’ are not 
included right now.  Could 
be important for WW and tt 

background to ZHH.
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Plan for Analyis
• Perform analysis on qqbbbb channel only at Ecm=500 GeV 

assuming -90% electron polarization (increases signal 
statistics by factor of 1.2 over unpolarized beams). 

• Use org.lcsim Fast MC simulation of baseline SiD.  This 
MC includes a reasonable algorithm for smearing charged 
track angles, curvature and impact parameters.  
Calorimeter simulation consists of  simple single neutral 
particle smearing with EM resolution for photons and 
HAD res for n,K0L.

• Scale single particle calorimeter resolutions to get a 
particular ΔEjet .

• Use org.lcsim ZVTOP for b-tagging
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I find wγ=28%; wh0=10%
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2 2 2 2

Drop constant term in single particle resolution for now.  Assume
negligible contribution from charged particles to 
jet energy resolution and write

where 0
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• Use udscb jets in ZHH events to train
• Perform jet analysis on charged and neutral objects 

allowing number of jets to vary; for each jet perform 
ZVTOP analysis as implemented in org.lcsim 

• Use the following variables in the btag neural net:

btagNN
btagNN

Pt-Corrected
# Secondary Vertices
# Unassociated Large Impact Parameter Tracks 

jet

vtx

vtx

vtx

E

E
M

M
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btagNN

btagNN

b jets

udsc jets

ZHH events
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• Force charged and neutral objects into 6 jets
• Loop over 45 jet-pair combinations & minimize 
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Z candidate jet-jet mass (GeV) for minimum
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H candidate jet-jet masses (GeV) for minimum
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• Force charged and neutral objects into 4 jets
• Loop over 6 jet-pair combinations & minimize 
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• Force charged and neutral objects into 4 jets
• Loop over 3 jet-pair combinations & minimize 
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ZHH Preselection
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• Force charged and neutral objects into 4 jets
• Loop over 3 jet-pair combinations & minimize 
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• Force charged and neutral objects into 6 jets
• Loop over 45 jet-pair combinations & minimize 
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• Force charged and neutral objects into 6 jets
• Loop over 45 jet-pair combinations & minimize 
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• Use signal and background events that pass preselection  to 
train

• Use the following variables in the ZHH neural net:
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Example bbbb event which passes all cuts:

x y z

7.093 4.233 0.851 8.796 2.900
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-1Results for qqbbbb only, s=500 GeV ,    L=2000 fb

Note:   is retrained for each jet
ZHH
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E
NN

E
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0. 51 41 0.39
0.3 38 38 0.42
0.4 75 36 0.52
0.5 33 34 0.42
0.6 70 35 0.49
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E gN N
gE
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Conclusions

• The coupling gHHH is measured with an accuracy of 40 –
50% at Ecm=500 GeV and L=2000 fb-1, which is twice 
the error quoted in the TESLA TDR analysis.  We have 
not yet included Cabbibo suppressed W decays in WW 
and tt events, so our results might get even worse.

• The biggest difference between the analyses is the level 
of background following cuts.  The increased 
background could be due to many things:
– This analysis may be missing an important ingredient.

• NNbtag training not optimized ?
• Preselection cuts based largely on χ2 variables and their  components 

may not be optimal
• Association of reconstructed jets with true jets not optimized?
• Algorithm to force event into 6 jets can be improved?
• Was it a mistake to use -90% e- polarization?
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Conclusions (cont.)

– There may be more gluon radiation in our background sample.
– The difference between n-fermion production, where 

resonances are included in matrix elements, and  Z/W/t 
resonance production followed by decay may be bigger than 
one might have expected. 

– We  might be being misled to some degree by low statistics in 
the tails of ZZ/ZH and tt event samples.  Larger statistics in 
tails will give us a more reliable picture of background level 
and improve NN training.

• Until the nature of ZZ/ZH and tt backgrounds are 
understood, no conclusions can be drawn from this 
analysis regarding the dependency of the triple Higgs 
coupling error on jet energy resolution.  


